
Evaluating Interaction with Machine
Learning Text Classifiers and
Interpretability Techniques

Federico Milana

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

UCL Interaction Centre

University College London

February 24, 2025



2

I, Federico Milana, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.



Abstract

As Machine Learning (ML) becomes increasingly integrated into society and more

users interact with ML-driven systems, understanding how they perceive and en-

gage with these technologies grows increasingly important. This Ph.D. thesis ex-

plores user experience, usability, interpretability, and cognitive biases of ML text

classifiers through two research projects based on a desktop application developed

to support thematic analysis, and a separate user evaluation of interpretability tech-

niques.

The Thematic Analysis Coding Assistant (TACA) enables users to import an

initial thematic analysis, extracts labelled sentences, trains an offline gradient boost-

ing classifier, and generates coding suggestions. Users can iteratively re-train the

model after re-labelling individual or batches of sentences. A user study run with

20 non-ML expert participants revealed that participants critically reflected on their

analysis, gained new thematic insights, and adapted their interpretative stance, while

also showing misconceptions about ML concepts, positivist views, and self-blame

for poor model performance.

A second study reports on an autoethnography of the use of TACA, revealing

different re-labeling and model inspection strategies, reflecting on potential struc-

tural changes to the analysis, and examinining the positionality of the user as a

developer, a researcher, and a participant. The findings provide complementary

insights into how ML can support and challenge analytical processes, personal re-

flections, and perceptions of the model.

Building on the findings of the first two studies, a third study evaluates two

popular local interpretability methods in text classification, LIME and SHAP, and
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a proposed global method using LLM-generated summaries based on LIME im-

portance weights. Among 128 participants, those without explanations identified

broader topics, while those using LIME and SHAP focused on individual terms,

and those using summaries identified more features overall. However, none of the

methods significantly improved model prediction accuracy.

Together, these studies contribute to seminal research on understanding the

perception and interaction with ML and the implications of system and interaction

design to improve the understanding of ML concepts.



Impact Statement

Recent advances in ML algorithms, computational power, and data availability have

driven what is now considered an ongoing AI spring. ML is increasingly used

in more aspects of society and is transforming industries, ranging from healthcare

and finance to education and entertainment, reshaping how decisions are made and

services are delivered.

As the number of applications for ML continues to grow, so does the number

of users exposed to these systems. Although the underlying theory behind ML is

highly advanced, users are typically not required to understand the technical de-

tails to interact even with extremely large and complex models. This is significant

considering the particularly high stakes in critical application areas where some of

these models are used, such as medical diagnosis, legal decision-making, and au-

tonomous driving. Consequently, understanding how users perceive and engage

with ML is arguably just as important as advances and breakthroughs in AI itself.

This thesis contributes to existing research on human-AI interaction by specifi-

cally evaluating user experience with ML text classifiers. ML in text processing has

experienced remarkable success in recent years, revolutionising natural language

understanding, machine translation, sentiment analysis, and automated content gen-

eration. Text classification, in particular, plays a crucial role in many applications

ranging from categorizing large volumes of unstructured text to supporting auto-

mated decision-making systems in various domains involving user interaction, in-

cluding spam detection, customer support automation, and content moderation.

The contributions of this thesis are manifold and will potentially gain more

significance over time as ML continues to be used more frequently and in more ap-
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plication areas. It is hoped that the different quantitative, qualitative and self-study

approaches used in this work will inspire the research community to take advantage

of the wide range of research methods available in HCI to evaluate interaction with

AI. All the design implications derived from the findings are provided in hope of

guiding future research and development of AI systems that prioritise user-centred

design, improve transparency, and facilitate the integration of new technologies in

modern society.

The impact of this work extends beyond academia by informing designers and

developers in various sectors of the industry on how to create more intuitive, trans-

parent, and effective applications of AI that better align with user needs and ex-

pectations. Companies developing these systems can benefit from the findings by

understanding how end users, from professionals to everyday consumers, perceive

and interact with ML, ultimately enhancing user satisfaction and promoting broader

adoption of AI technologies.
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Chapter 1

Introduction

Recent advances in algorithms, computational power, and data availability have

made Machine Learning (ML) ubiquitous in the digital landscape of today, with ap-

plications that span an ever-growing number of domains and industries. The under-

lying theory of ML is highly advanced and requires familiarity with mathematical

concepts, including linear algebra, calculus, and probability, that even many soft-

ware engineers may not possess. However, users are now increasingly exposed to

systems that do not require theoretical knowledge to interact and engage with. This

user base, spanning various industries and everyday applications, often relies on AI

systems to make critical decisions without fully understanding how they function.

The growing interaction between humans and Artificial Intelligence (AI)

brings new challenges in ensuring that users can meaningfully engage with, trust,

and interpret the output of ML systems. This is especially true as models continue

to grow in size and complexity, as recently demonstrated in Large Language Mod-

els (LLMs), and the high-stake scenarios that they are employed in, such as medical

diagnosis, legal decision-making, and autonomous driving. Understanding human-

AI interaction becomes crucial to design for effective collaboration by bridging the

gap between complex algorithms and user comprehension, to the point where it

is arguably just as important as the technical advances and breakthroughs in AI.

This thesis focuses on two aspects of ML that provide opportunities for deeper user

engagement and understanding: Interactive ML (IML) and Explainable Artificial

Intelligence (XAI).
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Currently, most ML applications are based on models trained on large data

sets, which seem to keep growing in size. The dependence of model performance

on the size of the training set is widely identified as one of the limitations of ML

(Mastorakis, 2018). As a response, there is growing interest in achieving high per-

formance by customising models trained on smaller data sets (Y. Zhang and Ling,

2018; Phung and Rhee, 2019; Choi and Ma, 2020; C. Y. Liao, P. Liu, and Wu,

2020). IML has been proposed as one approach to potentially achieve greater ac-

curacy when training models on small data sets or on data that is ambiguous in

nature (Amershi, Cakmak, et al., 2014). IML involves end-users in an iterative and

incremental learning process and leverages human feedback to drive ML. Rapid it-

eration cycles of input, model updates and output allow the model to be fine-tuned

incrementally by re-labeling misclassifications, labeling data points near decision

boundaries or setting preferences and thresholds. In addition to creative applica-

tions, where user customisation of ML models is particularly beneficial (Caramiaux

and Tanaka, 2013), the “human-in-the-loop” approach is showing promising results

in health informatics (Holzinger, 2016) and environmental sciences (Medeiros et

al., 2020), where only small data sets are available and problems are characterised

by complex or rare events. Besides reducing the requirement for extensive data sets,

another significant advantage is that model refinement can be driven by non-experts

(Ware et al., 2001).

Compared to earlier implementations of ML models, such as Naive Bayes clas-

sifiers, k-Nearest Neighbors and Decision Trees, the model architectures used today

are significantly more sophisticated. Although increasing algorithmic complexity

has achieved remarkable results in ML applications, it has also made it increasingly

difficult to understand, trust, and explain the output of these models. As the inner

workings remain largely inaccessible, sometimes even for experts, interpretability

remains a fundamental open challenge in ML (Lipton, 2018). Interpretability is

crucial because it directly impacts trust, reliability, robustness, causality, and us-

ability of models (Doshi-Velez and B. Kim, 2017), particularly in high-stakes areas

(Samek, Wiegand, and Müller, 2017). When models are interpretable, stakeholders,
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including practitioners, regulators, and end users can understand how decisions are

made, which is essential to validate the correctness of the model and ensure that it

operates fairly and ethically (Langer et al., 2021).

This thesis narrows its focus specifically to one of the most successful and

widely used applications of ML: text classification (Guidotti et al., 2018). In recent

years, ML in text processing has achieved remarkable success, transforming the

area of Natural Language Processing (NLP). Sentiment analysis, spam detection,

topic categorisation, language detection, and social media moderation are just a few

examples of how text classifiers are used today to improve customer experiences,

streamline operations, or gain actionable insights from vast amounts of unstructured

data.

The data sets used for ML classification in prior research typically have a well-

defined ground truth, for example news articles labelled by topic or reviews that are

clearly positive or negative. However, in reality, many other data sets are usually

more complex, and numerous external factors can significantly influence the pro-

cess of annotation. Factors such as cultural context, linguistic nuances, or personal

interpretation by annotators can introduce ambiguity and subjectivity in the manual

labeling of training data sets (Miceli, Schuessler, and T. Yang, 2020). Additionally,

data used for AI tools in creative industries is often inherently noisy, non-stationary,

or incomplete (Caramiaux, Lotte, et al., 2019). To better reflect real-world scenar-

ios where the ground truth is not always well-defined, provide more realistic as-

sessments of user behaviour, and yield more actionable results, the studies reported

in this thesis intentionally make use of data sets that are ambiguous and subject to

interpretation.

The design of user studies around AI systems has been recognised as a chal-

lenge (Kittley-Davies et al., 2019), as it is important to support positive experiences

of participants in the pursuit of ecological validity. This thesis focuses on Qual-

itative Data Analysis (QDA) as a domain for the studies. Not only has previous

work highlighted the potential benefits of applying ML to QDA (Chen et al., 2018;

Gebreegziabher et al., 2023), but QDA also is particularly suitable in capturing the
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individuality of the user by enabling interaction with ML models according to indi-

vidual perspectives and interpretation of ambiguous data. However, although QDA

serves as a valuable application domain for the studies, it should be emphasised that

the main interest lies in the interaction with ML.

1.1 Research Questions
The primary aim of this thesis is to evaluate interaction with ML in terms of how

users perceive, engage with, and interpret ML text classification models. The fol-

lowing research questions (RQs) were formulated over the course of the Ph.D., with

the later questions shaped and refined by the findings of the earlier studies. The

first three RQs were investigated through the Thematic Analysis Coding Assistant

(TACA), a fully functioning IML GUI desktop application developed to assist the

coding phase of the analysis by training a text classifier on an initial coding phase

to provide additional coding suggestions. The four questions are addressed in the

context of QDA as an application for text classification.

RQ1: How do non-expert users perceive ML when analysing ambiguous

data?

Where by “perceive” includes how non-expert users understand the contribu-

tion of ML to their analytical process. For example, whether they consider ML an

analytical tool, a supplementary assistant, a collaborative partner, or an authorita-

tive source of insights. Shaped by calls from the literature to enhance, rather than

supplant, the work of human coders (Lewis, Zamith, and Hermida, 2013), this RQ

was meant to validate whether users recognise the subjectivity inherent the data, or

if they view the output of the model as objective, unbiased contributions. This RQ

leads into the following, consequent question:

RQ2: How do non-expert users’ perceptions of ML influence their inter-

action with it?

This RQ explores the consequences of non-expert perceptions of the ML

model, including biases and expectations, specifically how they influence how they

interpret the output of the ML model and consequently interact with it through the
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feedback assignment phase of the IML cycle. The following RQ was formulated to

gain complementary insights into IML:

RQ3: How can IML be used to support the analysis of ambiguous data?

This RQ explores whether IML can lead to new thematic insights and a more

critical evaluation of subjective and ambiguous data, enabling deeper, more nuanced

interpretations that may not emerge from manual methods. It highlights distinctions

between manual and ML-supported approaches to QDA and questions how the

feedback-driven, iterative nature of ML analysis encourages critical thinking and

alternative strategies. The findings revealed from this RQ raised broader questions

about the effects of ML on analytical workflows and outcomes, such as whether the

use of ML introduces new ways of thinking about the data by challenging existing

assumptions and encouraging more reflexive approaches.

Building on the results of the first three RQs, the final question extends the

focus onto XAI, exploring how interpretability could support IML for QDA:

RQ4: How do interpretability techniques affect users’ ability to predict

ML model behaviour?

The formulation of this RQ was mainly influenced by previous work on Layer-

Wise Relevance Propagation (LRP) saliency maps used in Convolutional Neural

Network (CNN) image classification (Alqaraawi et al., 2020). Many user stud-

ies in the literature on XAI measure user understanding of explanations (Lage et

al., 2019; Poursabzi-Sangdeh, Daniel G. Goldstein, et al., 2021b) or self-reported

trust (Nourani et al., 2019; Papenmeier, Englebienne, and Seifert, 2019) as a proxy

for usefulness of interpretability techniques. However, recent work has recently

revealed significant limitations of traditional methods for evaluating model expla-

nations involving subjective feedback (Lakkaraju and Bastani, 2020; Schneider,

Meske, and Vlachos, 2021). This RQ is based on a previously proposed metric to

assess the interpretability of a system according to which, if users truly understand

how the system functions, they should be able to accurately predict its output (Mu-

ramatsu and Pratt, 2001). This method, known as “forward simulation”, involves

asking users to anticipate or simulate the model’s output, thereby providing an ob-
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jective measure of interpretability (Belle and Papantonis, 2021). Although many

recent studies have used forward simulation to evaluate interpretability in various

domains (B. Kim, Khanna, and Koyejo, 2016; Poursabzi-Sangdeh, Daniel G Gold-

stein, et al., 2021a; Buçinca, Lin, et al., 2020; Alqaraawi et al., 2020; Waa et al.,

2021), it has yet to be applied in the context of interpretability for text classification.

The RQ was answered by addressing the following sub-questions:

• RQ4.1: Do SHAP and LIME generated word importance heat maps assist

participants in predicting the outcome of a text classifier?

• RQ4.2: Are LLM-generated summaries of LIME word importance weights

an effective interpretability technique?

• RQ4.3: What are the effects of interpretability techniques on the confidence

of predictions of the model outcome?

• RQ4.4: How do different interpretability techniques influence users’ attention

towards specific features, and what effect does this have on their ability to

understand overall model behaviour?

RQ4.1 was formulated around LIME and SHAP as these are the two most pop-

ular local interpretability techniques today (Salih et al., 2024; Aechtner et al., 2022;

Cesarini et al., 2024). Given that the limitations of local explanations have been

widely discussed in the literature (Ribeiro, Singh, and Guestrin, 2018; Alqaraawi et

al., 2020; Chromik et al., 2021), RQ4.2 leverages recent advancements in LLMs to

evaluate a novel global interpretability technique using LLM-generated summaries

of words according to their LIME importance weights from the training data set.

RQ4.3 and RQ4.4 examine the impact of interpretability techniques on users’ confi-

dence in their predictions and how these techniques influence their focus on specific

features, assessing how this attention affects their overall understanding of model

behaviour. RQ4.3 was motivated by previous work on misleading explanations

which artificially increase user confidence (Schneider, Meske, and Vlachos, 2021),

while RQ4.4 was included to explain the results of RQ4.1 and RQ4.2, in a similar
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fashion to the study on saliency maps applied to image classification (Alqaraawi

et al., 2020).

1.2 Thesis Structure
The thesis follows three main studies to provide a comprehensive understanding of

the key questions, findings, and their implications. Each study is presented in its

own chapter.

Chapter 2 reviews the relevant literature on human-AI interaction, IML and

XAI, examining key concepts, theories, and prior research in these areas. Identify-

ing gaps in the current research, it lays the foundation for the studies presented in

the later chapters.

Chapter 3 documents the Study 1, which investigates how non-experts in ML

engage with TACA, to address RQ1 and RQ2. This study explores user interac-

tions, behaviour, and perceptions of 20 participants who applied IML to QDA. The

chapter outlines the design and implementation of TACA, describing novel UI fea-

tures that support iterative re-labeling, model inspection, and feedback assignment.

With qualitative and quantitative methods, the chapter examines the participants’

understanding of IML processes and their experiences evaluating and refining the

model. The discussion highlights reflexivity in reassessing the analysis based on

contrasting coding suggestions. It also explores the tension between the subjec-

tive data and the perceived objectivity of the model, noting some over-reliance on

ML outputs. Finally, it considers to what extent UI features shaped engagement,

supporting critical evaluation of model performance.

The participants in Study 1 exhibited limited engagement with the IML as-

pects of TACA as a consequence of their perceptions of the model as an objective

and authoritarian source of advice. To address this limitation, among others, Chap-

ter 4 builds on the previous chapter by documenting Study 2: an autoethnographic

account of TACA framed within the roles of developer, researcher and participant.

This chapter addresses RQ3 by reporting on how sustained interaction with TACA

led to deeper insights into the qualitative analysis performed in the previous study
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and describing how ML can be applied to analytical processes like QDA. The itera-

tive engagement with the system revealed key differences between non-expert user

interactions and those of a user with knowledge in ML, and how these influenced re-

labeling strategies, decision-making, model perception and evaluation. The chapter

also explores how design choices shaped user interaction, emphasising the impor-

tance of balancing usability and transparency in IML systems to support reflexivity

and data analysis.

Chapter 5 presents Study 3: an online user study evaluating model-agnostic

interpretability techniques in the context of text classification. The study addresses

RQ4 by comparing two widely used techniques, LIME and SHAP, and a novel tech-

nique using LLM-generated summaries, in predicting model outcome. The chapter

discusses the design and methodology of the experiment, in which 128 participants

engaged with different explanations. Through a quantitative and qualitative anal-

ysis, the results indicate that different explanations increased user awareness of

specific features, but they did not significantly improve the accuracy of outcome

prediction. The chapter includes a discussion on user interaction with local ver-

sus global explanations, and the limitations of current techniques in handling the

complexity of textual data.

Chapter 6 concludes the thesis by summarising the key findings and contri-

butions, discussing the implications for the design of AI systems, and suggesting

avenues for future research.

1.3 Research Contributions
The work presented in this thesis provides several contributions to the growing

body of literature on human-AI interaction. These include a system contribution

in TACA, a fully-functional IML application designed and implemented to answer

RQ1-3. Significant effort was made to package existing ML Python libraries into

executables, an uncommon process that extends beyond their typical use case. The

contributions also include the use of a wide range of complementary methodological

approaches in quantitative-, qualitative- and self-study-based analyses, demonstrat-
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ing that a combination of different research methods can provide a more compre-

hensive understanding of the field. Notably, the autoethnography reported in this

thesis is the first on IML. Empirical contributions are reported in Chapters 3-5 and

summarised below.

Chapter 3 shows that TACA was effective in exposing the participants to IML

and applying it on qualitative data sets. Specific UI features, such as data aggrega-

tion through frequency-based keywords, promoted a thorough examination of the

data, facilitating the evaluation of the model and the assignment of feedback dur-

ing the IML cycle. The study highlights important misconceptions regarding the

functionality of the model. Significantly, the findings suggest that users with no

experience in ML tend to perceive the model as an external, objective source of

advice, and consequently hold themselves accountable when the model does not

perform well, answering RQ1 and RQ2. These findings were made possible due to

the ambiguous ground truth in the data, which was open to interpretation, allowing

participants to critically reflect on their own analytical decisions in relation to the

output of the model. Based on this understanding, the chapter elaborates on how

applications could be designed to improve the understanding of ML concepts and

foster reflexive work practices beyond the scope of QDA.

Chapter 4 answers RQ3 by systematically describing and analysing how the

developer of TACA used and experienced the system through sustained and gen-

uine use. Shaped by the roles of developer, researcher and participant, as well as

experience in ML, the interactions with the tool differed significantly from those

of the participants in every phase of the IML cycle. The iterative engagement with

the model prompted reflections on potential structural changes to the analysis and

encouraged reflexivity. Unlike the experiences of the participants, this was not the

result of viewing the model as an external, objective source of advice, but rather

a consequence of reviewing both the suggestions of the model and the data used

for training. The design choices made in TACA highlighted the importance of bal-

ancing transparency and usability to support both efficiency and accuracy in IML

systems. More generally, the chapter argues that ML relies on the pattens in the
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training data and therefore only extends human interpretation without challenging

existing assumptions. Although ML can support analysis, uncovering radical new

insights remains a human skill, especially when interpreting ambiguous data that

requires critical thinking and domain expertise.

Chapter 5 answers RQ4 by reporting on a thorough evaluation of LIME and

SHAP, the interpretability techniques most commonly used in ML text classifica-

tion, in addition to presenting a novel technique involving LLM-based summarisa-

tion. The results suggest that LIME, SHAP, and LLM-generated summaries have

a very limited impact in text classification. The explanations guided the partic-

ipants’ attention toward specific features, potentially at the expense of a broader

understanding of the behaviour of the model. The large number of features (word

embeddings) makes it unlikely that specific features in the LIME and SHAP exam-

ples, like individual words, reappear in the prediction tasks. On the other hand, the

generated summaries helped participants identify more features overall, but these

were only the most prominent, omitting rare but important patterns in the data. The

findings confirm the limitations of current interpretability techniques and the need

for future research to develop approaches that provide detailed insights while also

offering a broader perspective into the inner workings of ML models.

Chapter 3 was presented as a paper to appear in the ACM Conference on Com-

puter Supported Cooperative Work (CSCW) in 2025:

Federico Milana, Enrico Costanza, Mirco Musolesi, and Amid Ayobi.

“Understanding Interaction with ML through a Thematic Analysis Cod-

ing Assistant: A User Study”. Proceedings of the ACM on Human-

Computer Interaction (CSCW)

Chapter 4 has been presented as a paper under review for the ACM Conference

on Intelligent User Interfaces (IUI) in 2025:

Federico Milana, Enrico Costanza, Mirco Musolesi, and Amid Ayobi.

“Understanding Interactive Machine Learning through an Autoethnog-

raphy of the Thematic Analysis Coding Assistant (TACA)”. Proceed-

ings of the ACM on Human-Computer Interaction (IUI)



Chapter 2

Literature Review

2.1 Background
AI is becoming a central focus in HCI and UX design to the point where some

researchers are now advocating that the priority of current HCI work should be to

transition from conventional human interaction with non-AI computing systems to

interaction with AI systems (Wei Xu and Gao, 2023).

Human-Centred AI is an emerging discipline that prioritises human needs and

values by ensuring AI systems are explainable, comprehensible, useful, and usable.

The literature calls for HCI practitioners to proactively contribute to AI research

and development to define UX criteria and iteratively test and optimise training

data and algorithms. This approach aims to mitigate extreme algorithmic bias while

considering privacy, security, environmental protection, social justice, and human

rights (Riedl, 2019; Xu, 2019; Shneiderman, 2020).

A key aspect of Human-Centred AI is rethinking ML algorithms and their in-

terfaces based on human goals, contexts, and workflows (Gillies et al., 2016). This

perspective prioritises the design of fair, interactive, collaborative, and transparent

AI systems that give full agency to stakeholders. As highlighted by Bulathwela

et al., 2024, this approach is crucial for fostering equitable and inclusive applica-

tions of AI, particularly in domains like education. However, despite the central

role humans play in the development, deployment, and use of AI, HCI is often not

a core component of AI research (Inkpen et al., 2019). This disconnect can result
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in AI systems misaligned with user needs, behaviours, and expectations, leading to

reduced usability, trust, and overall effectiveness. To address this, it is necessary to

evaluate AI as part of a larger socio-technical system, ensuring that user interactions

are integral to system design and refinement.

Human-AI interaction is considered to be uniquely difficult to design. Recent

work has categorised challenges as 1) capability uncertainty and 2) output complex-

ity (Q. Yang, Steinfeld, et al., 2020). These two aspects affect the design process in

ways that traditional methods struggle to address. Designers face not only technical

challenges but also issues relating to how AI behaviour and outputs are conceptu-

alised by the users. For example, users may struggle to understand why an AI sys-

tem made a particular decision, leading to mismatches between their mental model

of the system and its actual functioning. When designing systems that produce a vir-

tually infinite number outputs through fuzzy, open-ended interactions, prototyping,

sketching, and anticipating evolving behaviours become simply infeasible.

As a result, the literature is calling for a deeper understanding of the human ex-

perience with algorithms and the psychology of interacting with complex systems.

Sundar, 2020 advocates for research designed to explore the effects of AI on hu-

man behaviour as AI systems become more autonomous and the boundary between

human and machine agency becomes increasingly blurred. They argue that these

should be designed with a clear understanding of how users perceive and respond

to AI-driven decisions, urging a shift in research toward the symbolic and enabling

effects of AI on human behaviour. Similarly, Jiang et al., 2023 discuss the need

to address the tensions between automation and human agency, system uncertainty,

and user confidence in AI applications. AI design should focus on improving trans-

parency and user comprehension, enabling users to better understand AI decisions

and interact more effectively with these tools. Amershi, Weld, et al., 2019 propose

18 design guidelines for AI-infused applications, which emphasise transparency in

AI capabilities and performance, and the use of contextually relevant information

and explanations to effectively manage user expectations.

Two sub-fields of ML appear as promising avenues for studying human-AI in-
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teraction. The first is IML, which supports iterative experimentation by enabling

designers and users to “play with” AI, gaining an intuitive sense of its capabili-

ties. IML tools facilitate real-time engagement by allowing users to interact with

and adjust models dynamically. This interactive process creates manageable test

cases that help better understand complex interactions with AI (Q. Yang, Steinfeld,

et al., 2020). An promising example is the study by Q. Yang, Suh, et al., 2018,

where non-experts iteratively trained models using IML tools, revealing user trust

levels, usability challenges, and common misconceptions, such as over-reliance on

accuracy metrics. However, there seems to be a general lack of research using IML

purely to investigate human-AI interaction, likely because building effective sys-

tems can be resource-intensive, and existing tools are still gaining traction in the

field.

The second promising sub-field is XAI, which aims to improve the understand-

ing of how ML models make decisions by providing interpretable outputs and ex-

planation for model behaviour. A prime example is recent work by S. S. Y. Kim

et al., 2023, which revealed how participants would use interpretability methods

for purposes beyond just understanding AI outputs, such as calibrating their trust

in the system, improving their skills, providing better inputs and giving developers

feedback. Previous research leveraging XAI to study human-AI interaction also in-

cludes work from Ehsan et al., 2022, which explores the importance of embedding

human-centred perspectives in explanations to cater to diverse human stakeholders

who interact with AI at various stages. Q. V. Liao, Gruen, and Miller, 2020 also

contributes to this perspective, proposing a question-driven framework that aligns

XAI methods with user-centred needs. Their work highlights that user interactions

with AI explanations extend beyond mere understanding, encompassing goals like

assessing AI reliability, contextualising decisions, and providing feedback to im-

prove system performance. Overall, it is clear from the literature that XAI is an

essential component of human-AI interaction studies, focusing not only on model

transparency but also on how explanations facilitate trust, effective use, and collab-

orative refinement of AI systems.
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2.2 Interactive Machine Learning
IML aims to complement the computational power of ML algorithms with human

intelligence by eliciting the user in rapid and fine-tuned iteration cycles of input,

model updates and output. User input may vary between re-labelling misclassifi-

cations, providing and indicating representative samples and features, and setting

preferences and thresholds (Amershi, Cakmak, et al., 2014; Dudley and Kristens-

son, 2018). In contrast to conventional ML, the magnitude of each model update is

typically small, focusing on a specific aspect of the model, meaning that a fast train-

ing algorithm is often preferred to strong induction (Fails and Olsen, 2003; Arendt

et al., 2019).

Despite requiring domain knowledge, model refinement can be driven by non-

experts in ML, dismissing the traditional role of practitioners to collect, pre-process

and transform the data, tune parameters of the learning algorithm, and assess the

quality of the updated model (Amershi, Cakmak, et al., 2014). Additionally, IML is

less dependent on the size and quality of the training data set, potentially achieving

a greater precision accuracy in less time and with less costs (Arendt et al., 2019).

The “human-in-the-loop” approach has found success particularly in health in-

formatics applications, such as bioimage analysis, genome annotation and protein

folding, where human involvement is required to interpret complex or rare events

correctly (Wallace et al., 2012; Holzinger, 2016; Berg et al., 2019). This approach

also enables personalisation and fine-tuning, which is particularly relevant in cre-

ative applications. For example, performers could start with a system created by a

designer and then customise it by incorporating their unique artistic style and pref-

erences (Caramiaux and Tanaka, 2013). Alternatively, artists can train a model with

their own data set and explore the output of the model until they believe the system

has reached the desired level of performance based on their own expectations and

needs (Sanchez et al., 2021).

An additional motivation for leveraging IML is the concept of “machine teach-

ing”. With this term, the literature refers to the potential ability for this approach to

encourage the exploration of strategies by users when training ML models (Simard
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et al., 2017). In fact, by taking the role of a teacher teaching a machine how to per-

form a task, users are necessarily encouraged to build effective training strategies

to iteratively refine model behaviour (Shneiderman, 2020). This process has been

found to enhance user engagement and improve non-expert understanding of the

data and the model through natural exploration (Sanchez et al., 2021).

Given the growing adoption and diverse applications of IML, relevant research

has stressed the need for an increased understanding of end-user interaction design

of these systems, considering interface design critical to the success of the itera-

tive process (Amershi, Cakmak, et al., 2014; Corbett and Saul, 2018; Dudley and

Kristensson, 2018). The difficulty in evaluating these tools and their interfaces is

well-established, as the tight coupling between user and system makes the resulting

mechanisms of co-operation and co-adaptation challenging to identify and inter-

pret (Boukhelifa, Bezerianos, and Lutton, 2018). Still, considerable effort has been

made towards better-informed system design following guidelines and heuristics to

improve both user experience and model accuracy.

2.2.1 System Design

Addressing a lack of consolidated guidelines for IML system design is a review

from Dudley and Kristensson, 2018, who proposed several solution principles fol-

lowing the four elements defined as: sample review, feedback assignment, model

inspection, and task overview.

Not only is labelling data tedious and sometimes not considered worthwhile by

the user, but it requires investing significant effort before noticeable change in the

model (Wong et al., 2011; Groce et al., 2014; Ribeiro, Singh, and Guestrin, 2016).

Notably, there appears to be an opportunity in the evaluation of interaction methods

designed to enable the user to re-label multiple data points simultaneously. The

presentation of representative and non-redundant samples could address both issues

while allowing the user to assess the current state of the model more effectively.

In feedback assignment, the user manually selects features, re-assigns labels,

or provides any other input designed to steer the model. Because constraints to

the interactions with correction interfaces can easily translate to the degradation of
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the process, numerous studies have identified and explored novel interactions un-

restricted to labelling instances, such as feature selection and weight adjustment

(Stumpf, Rajaram, Li, Burnett, et al., 2007; Porter, Theiler, and Hush, 2013; Dud-

ley and Kristensson, 2018). However, these methods pose significant interface de-

sign challenges to avoid overwhelming the user with too many, or too advanced,

machine-centric metrics, whereas data labelling remains the most popular method

for end-user input (Hartmann et al., 2007; Amershi, Cakmak, et al., 2014).

Many possible causes of errors in ML fall under the categories of mislabelled

data, feature deficiencies and insufficient data (Amershi, M. Chickering, et al.,

2015). Several inspection methods allow the user to detect failures and their sources

differently, including presenting all of the unlabelled data points sorted by their pre-

dicted scores for some class, and showing only the best and worst matches (Fogarty

et al., 2008; Amershi, Cakmak, et al., 2014). A more effective presentation method

evaluated by Amershi, Fogarty, et al., 2009 consists of summarising model quality

while presenting low-certainty samples.

While most user studies on IML systems are time-limited and do not include

termination conditions, visibility of global objectives and task status can address the

inevitable point of diminishing returns reached in applications such as text classifi-

cation systems (Groce et al., 2014). Charte et al., 2015 reveal that describing rel-

atively simple strategies in the initial instructions and framing can greatly improve

user consistency and understanding. In addition to an improved mental model, in-

creased efficiency, and shorter sessions, strategies could also provide guidance to

non-expert users when making task-level assessments even in experimental settings.

2.2.2 Model Inspection

The illustration of the current learned concept is considered a fundamental issue in

end-user IML. Result visualisation methods can enable users to assess the quality

of the model and inform how to proceed in training (Amershi, 2011). Different

approaches have been evaluated for visualising predicted samples and labels. Users

often change their strategies in candidate selection during the labelling process due

to the observed behaviour in the model, and the likelihood increases significantly
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when additional information about the data or classifications is available (Bernard,

Hutter, et al., 2018; Dudley and Kristensson, 2018). However, if showing samples

with their predicted labels enables users to easily assess the current state of the

model, data-intrinsic properties like patterns or outliers emerge especially when

labels are excluded (Bernard, Zeppelzauer, et al., 2018).

Evaluations of visualising samples from the training set alongside, or in sep-

aration from, predicted instances seem lacking. Direct visual comparison between

trained and predicted samples might support the assessment of the current model

state while attenuating biases introduced by exclusively presenting predicted labels.

Equally overlooked is the interaction with trained samples, invariably considered

ground truth and never to be re-labelled despite the changes in strategy of the user

during the iterative process.

The visual representation of instances is highly dependent on data type and

usually task specific, but some model- and data-agnostic methods can be effective

(Bernard, Hutter, et al., 2018; Dudley and Kristensson, 2018). Pursuing the creation

of novel interaction methods with ML models, Kapoor et al., 2010 developed and

evaluated MiniMatrix, a system where users iteratively refine decision boundaries

in a confusion matrix after each re-classification. The commonality and simplicity

of confusion matrices as a visualisation method is leveraged mainly to identify and

tune numerical parameter settings. However, results of the user study indicate that

non-expert participants generally found the matrix valuable in providing insights

about the structure of the classification problem, suggesting equally promising re-

sults in result visualisation.

A study by Q. Yang, Suh, et al., 2018 revealed that users who are not formally

trained in ML tend to be more satisfied and trusting toward the learning results than

their professional counterparts. This is because many non-experts build models ex-

clusively for new insights on their data and disregard model accuracy or related

metrics that are too complex and overwhelming (Beauxis-Aussalet and Hardman,

2014). Drawing inspiration from MiniMatrix, it is possible to speculate that con-

fusion matrices are potentially more accessible to non-experts compared to these
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measures.

2.2.3 Text Applications

As the vast number of digital documents continues to increase, automated text cat-

egorisation, information extraction, and summarisation have witnessed particular

interest in the context of ML. Compared to different applications, there are numer-

ous pre-processing tasks in the NLP pipeline that benefit from manual intervention,

such as stop words selection, feature refinement, and dimensionality reduction (Ba-

harudin et al., 2010). Moreover, ground truth is arguably less defined in use cases

such as qualitative research, where the goal is not to be accurate or objective because

there is no single truth to inform data analysis correctly (Willig and W. S. Rogers,

2017). For these reasons, text applications seem particularly well-suited for the

implementation of the IML process, and several systems have been developed and

evaluated.

Abstrackr is a stand-alone annotation tool independent of its ML components

aiming to semi-automate the laborious task of citation screening for systematic re-

views in clinical research settings (Wallace et al., 2012). The user screens doc-

uments arranged by an Active Learning ordering function, manually accepting or

rejecting individual citations while entering additional relevant terms. Terms in-

dicated as relevant or irrelevant by the user appear highlighted in differing colours

within the text. Highlighting words or n-grams appears to maximise user perception

of the features being exploited by the model and improve the understanding of the

underlying function, including its deficiencies (Dudley and Kristensson, 2018).

ML is especially useful when data is large and complex, and the visualisa-

tions and interactions provided in IML applications should account for volume and

dimensionality. A popular text visualisation technique, word clouds provide a high-

level summary of text in a 2-dimensional space with font size proportional to the

frequency of each word, but fail to provide context or structure necessary to inspect

observed patterns (Chuang et al., 2012). In comparison, more advanced visualisa-

tions like Word Tree and DocuBurst employ interactive layouts to reflect semantic

content and enable rapid querying and exploration of bodies of text (Wattenberg
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and Viegas, 2008; Collins, Carpendale, and Penn, 2009). The cognitive advantages

of spatial representations of information are well documented and can effectively

support IML applications, as seen in iVizTRANS and NEREx; two interactive vi-

sual analytics tools used to iteratively train ML classifiers on transportation data and

conversation transcripts, respectively (Andrews, Endert, and North, 2010; Endert,

Fiaux, and North, 2012; Yu et al., 2015; El-Assady et al., 2017).

A different approach is taken by Podium, a prototype system enabling non-

expert users to rank multi-variate data points by dragging single rows in a table

(Wall et al., 2018). The tool updates a control panel after each iteration of a Rank-

ing Support Vector Machine model based on user preference, displaying informa-

tion about the resulting changes in the attribute weights. Similarly, the prototype

BrainCel features a spreadsheet where the user can select which points to edit, add

to the training set, or predict (Sarkar, Jamnik, et al., 2015). In a user study, the

cycle of editing, learning and guessing within the table successfully encouraged

participants to improve the model. Despite the lack of tables or spreadsheets as an

interactive or visualisation technique in text applications, the documented success

of simple interfaces in enabling non-expert users to build ML models suggests a

promising avenue (Sarkar, Blackwell, et al., 2014).

Given the significant size of qualitative data sets and the time-consuming and

laborious nature of coding, several attempts have been made to implement NLP

techniques and ML models to support qualitative researchers (Crowston, X. Liu,

and Allen, 2010; Crowston, Allen, and Heckman, 2012; Tierney, 2012; Grimmer

and Stewart, 2013; Lewis, Zamith, and Hermida, 2013; Liew et al., 2014; Muller et

al., 2016). Ranging from automatic content analysis to automatic coding, relevant

work reveals low accuracy as the primary limitation of these systems. The ten-

dency to advocate for a hybrid approach is commonly justified by the inadequacy

of “one-size-fits-all” models to capture contextual nuance. An additional range of

limitations discussed by Chen et al., 2018, such as a lack of understanding between

disciplines, points to IML techniques as possible solutions.

Recent work on AI-assisted data annotation presented and evaluated PaTAT,
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a human-AI collaborative tool that assists users with qualitative coding by imple-

menting explainable interactive pattern synthesis to provide coding suggestions in

the initial phase of the analysis (Gebreegziabher et al., 2023). The authors stress

that, while in most domains, IML systems focus primarily on the optimisation of

the model, in domains such as QDA, scaffolding human learning is just as if not

more important. After all, qualitative analysis is creative, reflexive and subjective

(Braun and Clarke, 2019), and entails the iterative exploration and review of new or

existing patterns (Braun and Clarke, 2006).

2.3 Explainable Artificial Intelligence
Interpretability in ML has become a crucial area of research, commonly referred

to as “Explainable AI”, especially as ML models are increasingly implemented in

high-stakes environments such as healthcare, finance, criminal justice, and the mili-

tary. Interpretability refers to the degree to which a human can understand the cause

of a decision or predict the outcome of a model (Doshi-Velez and B. Kim, 2017).

The concept of interpretability is often discussed in contrast to the “opaque-

box” nature of many modern models, where the internal workings are opaque some-

times even to the experts who designed them. Historically, simpler models like

Decision Trees and Linear Regression were considered inherently interpretable be-

cause their decision-making processes could be easily traced and understood. How-

ever, as models have shifted towards more complex and non-linear architectures,

achieving the same level of interpretability has become more challenging. For ex-

ample, ensemble methods such as Gradient Boosting leverage the collective strength

of multiple weak learners by combining their outputs to generate predictions. Deep

Neural Networks consist of layers of non-linear transformations and mathematical

functions that often involve millions or even billions of learned parameters to cap-

ture intricate patterns from large amounts of data. Transformers add another layer

of sophistication by using self-attention mechanisms to process entire sequences of

data simultaneously and learn contextual relationships more effectively.

A wide range of methods has been developed to address the challenge of in-
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terpretability for these complex models. A key distinction made in the literature is

between global interpretability, which seeks to provide an understanding of the gen-

eral behaviour of the model, and local interpretability, which focuses on explaining

individual predictions (Guidotti et al., 2018; Adadi and Berrada, 2018).

Global interpretability involves understanding which features influence model

decisions, which is particularly helpful when ML models are used to inform

population-level decisions, such as drug consumption trends or climate change (C.

Yang, Rangarajan, and Ranka, 2018). Examples of global methods include inducing

decision trees that approximate the model outcome (Craven and Shavlik, 1995; C.

Yang, Rangarajan, and Ranka, 2018), quantifying the predictive power of individ-

ual input features at a global level (Covert, Scott M Lundberg, and S.-I. Lee, 2020),

and utilising linear probes to generate confidence scores via flattened intermediate

representations (Dhurandhar et al., 2018; Cesarini et al., 2024).

Local interpretability aims to explain why a specific decision was made for a

particular input, which is useful when justifying why the model made a specific de-

cision for a single instance (Adadi and Berrada, 2018). LIME, short for local inter-

pretable model-agnostic explanations, creates a local surrogate model that closely

mimics the prediction of the underlying opaque-box model for a single instance.

Unlike the opaque-box model, these local surrogate models are transparent and in-

terpretable. SHAP, short for Shapley additive explanations, explains the prediction

of an instance by calculating the contribution of each feature to that prediction using

concepts derived from coalitional game theory (Aechtner et al., 2022).

Methods can also be broadly categorised as model-specific and model-agnostic

(Linardatos, Papastefanopoulos, and Kotsiantis, 2021). Model-specific approaches

are tailored to particular types of models, drawing on their internal structures to

generate potentially more accurate explanations. For example, in Neural Networks,

the gradient associated with each input feature with respect to the output can be

used to associate a score, or weight, to individual features for a given prediction. In

contrast, model-agnostic approaches can be applied to any model regardless of its

architecture. These methods are usually post hoc and generate explanations solely
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based on the inputs and outputs of the model. LIME and SHAP are two examples

of (local) model-agnostic methods that have gained widespread attention for their

versatility and effectiveness, and represent the two most widely used XAI methods

today based on the current literature in different domains (Aechtner et al., 2022;

Cesarini et al., 2024; Salih et al., 2024).

2.3.1 Interpretability in Text Classification

Almost no inherently interpretable rule-based system is suitable for text applications

due to the sheer size of the feature space (Ribeiro, Singh, and Guestrin, 2018). This

fact has driven the development and evaluation of numerous post hoc interpretability

methods for opaque-box models with trade-offs between interpretability, user trust,

faithfulness, and computational efficiency.

A comprehensive evaluation of various post hoc interpretability methods for

text using performance metrics by Atanasova et al., 2020 introduced a diagnostic

framework to evaluate interpretability methods based on faithfulness, agreement

with human rationales, confidence indication, and more. The study found that

model-specific gradient-based methods generally outperform other model-agnostic

methods for several Neural Network architectures, but also require more computa-

tional resources.

Another systematic evaluation of XAI methods in text classification using per-

formance metrics and human evaluation (Cesarini et al., 2024) has recently provided

several contributions to the literature. Methods focusing on individual feature im-

portance were found to have higher fidelity compared to those that rely on general

decision rules. Furthermore, while global explanations are perceived as more satis-

fying and trustworthy, they are also less practical than local explanations in many

contexts.

Regarding local explanations, examples of classification instances have been

shown to be a feasible vehicle to explain algorithmic behaviour (Caruana et al.,

1999; Mikolov et al., 2013; Cai, Jongejan, and Holbrook, 2019), as this type of

explanation has precedent in how humans sometimes justify actions by analogy

(Lipton, 2018). However, the limitations of “explanations by example” have also
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been widely discussed. For example, B. Kim, Khanna, and Koyejo, 2016 claim

that, in order to construct better mental models and understand complex data dis-

tributions, explanations should also include what is not captured in the examples.

Ribeiro, Singh, and Guestrin, 2018 argue that this is because these methods provide

a trade-off: although each explanation is relatively easy to understand, they typi-

cally only capture the behaviour of the model within a specific, local region of the

input space, which can lead to misunderstandings and poor approximations of the

broader behaviour.

Traditional global rule-based interpretability techniques have been found to

exhibit lower fidelity than local explanations (Cesarini et al., 2024) and, more im-

portantly, do not increase task performance (Waa et al., 2021). Recent advances in

LLMs have enabled efficient processing of large amounts of data that can capture

complex patterns and nuances in text (Wei et al., 2022). Given these capabilities,

there is an opportunity to enhance global interpretability techniques for text clas-

sification by leveraging LLMs to generate summaries of word importance weights

from techniques like LIME. This approach could provide a more holistic view of

model behaviour by aggregating feature importance across all instances in the train-

ing dataset, offering a coherent and comprehensive perspective on model decision

patterns, instead of relying on limited or sample-based explanations.

2.3.2 User Studies

Doshi-Velez and B. Kim, 2017 established a baseline of evaluation approaches to

interpretability techniques, proposing three major types: 1) application-grounded,

where the explanations are implemented in an application and tested by a domain

expert, 2) human-grounded, where experiments are run with non-experts within a

simplified application, and 3) functionally-grounded, that does not involve users but

rather performance metrics. In a recent systematic review on evaluating XAI, Nauta

et al., 2023 reported that, among 312 papers published in the past 7 years at major

AI and ML conferences that introduce an XAI method, 33% evaluated with anec-

dotal evidence, 58% applied quantitative evaluation, and only 22% evaluated with

human subjects in a user study. Although numerous studies on interpretability tech-
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niques often combine a variation of either application- or human-based evaluations

with functionally-grounded evaluations (for example, in the very paper introduc-

ing LIME (Ribeiro, Singh, and Guestrin, 2016)), this work has specific interest in

how previous research has designed user studies to draw meaningful conclusions on

interpretability techniques.

A popular approach to evaluate interpretability in user studies involves a direct

review of model explanations with end users for their subjective feedback. In fact,

many papers report measurements of user understanding of explanations (Lage et

al., 2019; Poursabzi-Sangdeh, Daniel G. Goldstein, et al., 2021b) or self-reported

trust (Nourani et al., 2019; Papenmeier, Englebienne, and Seifert, 2019) as a proxy

for usefulness and interpretability. However, recent work has recently revealed sig-

nificant limitations of these methods for evaluating model explanations involving

subjective feedback. For example, it has been shown to be possible to fool users

in accepting wrong decisions (Schneider, Meske, and Vlachos, 2021) and manipu-

late user trust (Lakkaraju and Bastani, 2020) with misleading explanations that are

not faithful to the opaque-box model. Furthermore, human judgment ratings can

include user cognitive biases toward visual appearance or completeness of saliency

maps that result in incorrect ratings (Mohseni, Block, and Ragan, 2020). In a study

from Buçinca, Lin, et al., 2020, participants reported a higher preference and trust in

an AI decision support system with images that used explanations, but the explana-

tions did not translate to an improved performance in making accurate predictions.

To address the shortcomings of these methods, Mohseni, Block, and Ra-

gan, 2020 proposed a “human-grounded benchmark” using human-attention data

to compare generated saliency maps in images or text against user annotations of

regions or phrases most representative of the target topic. However, despite offering

a more objective and reliable evaluation method, a reported limitation of the bench-

mark is the significant cost of manual data annotation. Instead, an alternative evalu-

ation method is based on a previously proposed metric to assess the interpretability

of a system according to which, if users truly understand how the system functions,

they should be able to accurately predict its output (Muramatsu and Pratt, 2001).
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Waa et al., 2021 reported on a user study asking participants to predict the

outcome of a personalised advice system for the self-management of diabetes to

compare rules-based to example-based explanations. B. Kim, Khanna, and Koyejo,

2016 designed a similar predictive task in which participants were asked to predict

the outcome of an image classifier based on “prototypes” (representative examples

of typical instances of model behaviour) and “criticisms” (examples that differ sig-

nificantly from prototypes). Buçinca, Lin, et al., 2020 included a proxy task where

participants focused on predicting AI recommendations from an image decision

support system based on example-based and general explanations. Alqaraawi et

al., 2020 developed a user study on image classification in which participants were

shown a collection of true positive, false negative and false positive images from

a trained CNN with or without LRP saliency maps, and then asked to predict the

outcome of the same model on an additional image close to the examples in terms

of vector distance. The evaluation method used in these studies is usually defined

as “forward simulation” (Belle and Papantonis, 2021), and has not yet been applied

to interpretability in text classification.

2.4 Summary and Discussion
As AI becomes increasingly embedded in everyday applications, human-AI in-

teraction is becoming a focal point in HCI research. Recent literature calls for a

deeper understanding of how users experience and interact with AI systems, with

researchers emphasising transparency, comprehension, and alignment with human

cognitive models to foster better user interaction with complex and unpredictable

systems.

Within this field, IML and XAI are two areas where HCI research can take

place to improve human-AI collaboration and understanding. The first allows users

to interact with and adjust ML models iteratively by enabling dynamic experimen-

tation from frequent, iterative interactions with core features of ML. XAI seeks

to make the decision processes of ML models interpretable, and in doing so, also

touches on additional aspects, such as performance assessment, trust calibration,
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and mental model adjustments.

Section 2.2 shows that the existing literature on IML is largely focused on

design guidelines and implications. In contrast, there is a general lack of research

specifically utilising IML as a means to investigate human-AI interaction dynamics.

For example, how do users understand and interpret the purpose of ML within the

context of their interactions? How do mental models, perceptions, and decision-

making strategies evolve over time as users engage in the iterative cycle of IML?

How does the integration of IML affect the depth and scope of engagement with

the data? Answering these questions would help achieve the deeper understanding

of the psychology of interacting with complex systems called by studies such as

those of Sundar, 2020 and Jiang et al., 2023 and ultimately advance the design of

AI systems that align better with human cognition and behaviour. This observation

motivated the formulation of RQ1-3 described in Section 1.1.

Chapter 3 addresses a research gap in the missed opportunity to utilise IML

to uncover actionable insights in human-AI interaction. Although the findings pro-

vide several design implications on the model inspection and feedback assignment

phases of the IML iterative cycle, its main contribution is an improved understand-

ing of non-expert perceptions and misconceptions of ML models. Chapter 4 further

builds on this to examine interactions in more depth through sustained engagement,

contributing to the literature with a first-hand account of evolving re-labelling and

model inspection strategies, and the effects of integrating ML into the analysis of

data.

The literature reviewed in Section 2.3 shows that previous work has evaluated

interpretability techniques by measuring one or a combination of performance met-

rics (Atanasova et al., 2020; Cesarini et al., 2024), user understanding (Cesarini et

al., 2024), self-reported trust (Nourani et al., 2019; Papenmeier, Englebienne, and

Seifert, 2019; Cesarini et al., 2024), and human-grounded benchmarks (Atanasova

et al., 2020; Mohseni, Block, and Ragan, 2020). Instead, Chapter 4 follows the rea-

soning of Muramatsu and Pratt, 2001 to measure outcome prediction to adopt the

evaluation method used in related work on different task domains (B. Kim, Khanna,
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and Koyejo, 2016; Alqaraawi et al., 2020; Belle and Papantonis, 2021; Waa et al.,

2021) to extend the findings to text classification.

The contribution of Chapter 4 in answering RQ4 thus addresses a specific

methodological research gap where interpretability techniques in text classification

have not yet been evaluated through model outcome prediction. This gap is par-

ticularly significant because some alternative evaluation methods have been shown

to either fall short in incorporating the user-centred evaluations encouraged in the

literature (Abdul et al., 2018; D. Wang et al., 2019; Q. V. Liao, Gruen, and Miller,

2020), or make use of misleading measures that fail to account for biases in hu-

man judgement (Lakkaraju and Bastani, 2020; Mohseni, Block, and Ragan, 2020;

Schneider, Meske, and Vlachos, 2021). As argued by Nauta et al., 2023, inter-

pretability is multi-faceted, and a single metric cannot capture the effectiveness of a

technique. Therefore, the domain of text classification can benefit from the applica-

tion of an already established evaluation method that can complement the existing

methods used in the literature so far.



Chapter 3

Understanding Interaction with

Machine Learning through a

Thematic Analysis Coding Assistant:

A User Study

This chapter introduces TACA, a fully-functional IML application designed and

developed to assist users in QDA and deployed to run on Windows and MacOS

entirely offline to preserve the confidentiality of the data used. It then presents an

evaluation of human-AI interaction enabled by TACA in the context of thematic

analysis. Thematic analysis is a QDA research method used to identify, analyse,

and report patterns, or “themes”, within data, involving an iterative process of read-

ing the data, generating initial codes, grouping codes into themes, and reviewing

themes. TACA allows users to import a qualitative data set and trains an ML clas-

sifier on an initial coding phase to suggest how the analysis can be extended by

assigning the user-defined themes to sentences that were not previously coded.

As discussed in Section 1, QDA is particularly well suited for research in

human-AI interaction because the lack of ground truth means that data is ambiguous

and thus allows for a more nuanced exploration of how users navigate through dif-

ferent perspectives. Additionally, IML allows users to steer the model according to

personal interpretations and emerging insights in real-time, an important aspect of
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QDA. However, while QDA serves as a valuable application domain for this study,

the main interest in this work lies in user interaction with ML. It remains unclear

how non-expert end-users understand and interact with these systems, including

potential biases involved in the iterative process, so this work aims to address this

particular research gap.

Section 2.2 shows that the literature on IML in HCI is largely focused on design

guidelines and implications. The chapter explores these aspects, specifically by

evaluating a novel data aggregation technique based on word frequency to address

reported limitations of IML systems, but the main goal is to answer the following

research questions described in Section 1.1:

• RQ1: How do non-expert users perceive ML when analysing ambiguous

data?

• RQ2: How do non-expert users’ perceptions of ML influence their inter-

action with it?

The decision to evaluate specifically non-expert interaction was based on the

premise that, besides reducing the requirement for extensive data sets, a signifi-

cant advantage of IML is that model refinement can be driven by users who lack

specialised knowledge in ML (Ware et al., 2001). Additionally, as the general pop-

ulation is more frequently exposed to AI systems, understanding how non-expert

users perceive and interact with ML becomes especially valuable and can reveal

insights that are increasingly relevant.

The answers to the two RQs were revealed through thematic analysis of the

responses of 20 participants in a semi-structured interview (see Appendix A.5) con-

ducted after the participants spent time interacting with TACA. The findings were

also supported by a quantitative analysis of automatic interaction logs aimed to cap-

ture user behaviour.

The work in this chapter is to appear as a paper in the ACM Conference on

Computer Supported Cooperative Work (CSCW) in 2025:

Federico Milana, Enrico Costanza, Mirco Musolesi, and Amid Ayobi.
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“Understanding Interaction with ML through a Thematic Analysis Cod-

ing Assistant: A User Study”. Proceedings of the ACM on Human-

Computer Interaction (CSCW)

The following section provides additional details on the context of QDA in this

work.

3.1 Qualitative Data Analysis as an Application Area

for Interactive Machine Learning
The literature on IML identifies one of the greatest advantage in the ability for non-

experts in ML to drive model refinement through low-cost trial and error or focused

experimentation with inputs and outputs (Amershi, Cakmak, et al., 2014). Applica-

tions generally assume a considerable degree of domain knowledge from the end-

user, since overall familiarity with the data is required for accurate model inspec-

tion and feedback assignment. In addition, evaluations of smart systems through a

controlled yet ecologically valid study requires experimental tasks to be engaging

and enjoyable to motivate participants and provide meaningful discussion points

(Kittley-Davies et al., 2019).

Prior work highlighted the potential to apply ML to QDA (Chen et al., 2018;

Gebreegziabher et al., 2023). However, progress in applying ML to social science

research has been relatively slow compared to domains like medicine, as low ac-

curacy has been generally identified as the main limitation of systems automating

QDA (Lazer et al., 2009). This issue may be addressed by applying IML techniques

to help mitigate the impact of lower system accuracy. Numerous applications im-

plementing the IML cycle have been evaluated in user studies involving non-expert

participants, demonstrating that efficient feedback assignment and model inspection

techniques are sufficient in building accurate models (Wallace et al., 2012; Sarkar,

Jamnik, et al., 2015; Yu et al., 2015; El-Assady et al., 2017; Wall et al., 2018; Q.

Yang, Suh, et al., 2018; Gebreegziabher et al., 2023).

An additional issue in applying conventional ML to QDA is that building a

learning model is not the primary goal of the social scientist. While ML models re-
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quire a large quantity of labelled data under predefined classes, new categories and

concepts are likely to emerge during the coding phase, some of which might appear

very infrequently. This, combined with calls from the literature to enhance, rather

than supplant, the work of human coders (Lewis, Zamith, and Hermida, 2013),

prompted to consider a different approach to code automation. Instead of automat-

ing the coding process, there is a clear opportunity to assist researchers in reflecting

on their completed analysis by providing additional automated coding suggestions.

3.2 The Thematic Analysis Coding Assistant (TACA)
To enable a user study on applying IML to QDA, TACA was developed as a fully

functioning GUI desktop application designed to assist specifically with the cod-

ing phase of thematic analysis. TACA was deployed as an executable to run on

Windows (minimum version: 8) and MacOS (minimum version: 10.9). After users

have performed at least an initial manual pass of the analysis, they can import the

coded data set into TACA, which then trains an ML classifier to suggest how the

initial analysis could be extended by assigning the user-defined themes to additional

sentences that were not previously coded. Users can then inspect the output of the

classifier (i.e., the coding suggestions), consequently modify the training data (i.e.,

re-labelling sentences from one theme to another), re-train the ML classifier to in-

teractively refine it, and, in so doing, customise it to produce coding suggestions

that align better with the user’s analysis.

Because qualitative data can often be confidential and researchers may not have

had permission to share it, it was critical to design and implement TACA as a stand-

alone desktop application that could be used offline (i.e., without any data being

transferred over the Internet, so no server support). Designed to support different

software and strategies, TACA allows users to import the coded text and select

Microsoft Word or popular QDA software NVivo1, MAXQDA2 or Dedoose3 as the

original coding environment source. After importing the data, users can define a list

1https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
2https://www.maxqda.com/
3https://www.dedoose.com/
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of terms to exclude from the analysis, such as transcript artifacts or additional stop

words that might be specific to the data set that is being analysed.

Following the setup, once the tool finishes extracting data, training the model,

and classifying new sentences, the user is presented with the Text page, containing

the entire transcript with the coded sentences. Highlighted in grey are the user-

coded sentences, while those predicted by the model appear in blue, seen in Fig-

ure 3.1. Theme names appear in line with the respective sentences, in a similar

fashion to comments in Microsoft Word and NVivo, and are also shown in a tooltip

on mouseover.

Figure 3.1: Text page showing highlighted user-coded sentences in grey and classified sen-
tences in blue.

A navigation bar at the top provides links to three other pages: Codes, Key-

words, and Confusion Tables. The Codes page contains a basic lookup table for

user-defined codes and respective themes. Seen in Figure 3.2, this page is included

to allow the user to revisit their manual coding by clicking on any code to see all

the associated sentences.

The Keywords tab includes a drop-down menu containing three pages: Train

Keywords, Predict Keywords, and All Keywords. In line with previous research

(Dudley and Kristensson, 2018), it was hypothesised that giving salience to indica-
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tive keywords accelerates the assessment process. Therefore, the terms are sorted

by frequency, where each column is a theme, shown in Figure 3.3. In the Train Key-

words table, the tool extracts all individual words that were manually coded under

each theme by the user. In the Predict Keywords table, the words are only extracted

from the classifications of the model. The All Keywords table is a combination of

both Train and Predict. In all tables, a frequency counter is displayed next to each

word, indicating the number of sentences that contain it. Each word can be clicked

to reveal the list of sentences, individually highlighted in grey for training samples

and blue for predicted. Unique to all Keywords Tables is the re-labelling interac-

tion that allows users to drag and drop either a keyword or a single sentence from

one column to the other, or to a bin. Keywords are used as handles for groups of

sentences to enable the user to re-label multiple data points, or sentences, at once.

Figure 3.2: Codes page showing a lookup table for user-defined codes and respective
themes.

After interacting with the table, the button Re-classify can be clicked to re-train

the classifier. Once the re-classification ends (generally taking from 10-20 seconds

to a few minutes, depending on the data and the computer speed) and the table is

updated, individual cells where the frequency changed by more than half its original

value are highlighted, following the design guidelines for dynamic visualisations in
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Figure 3.3: All Keywords Table page showing the most frequently occurring terms for each
theme.

progressive analysis by Stolper, Perer, and Gotz, 2014. Additionally, because of the

non-deterministic nature of the gradient boosting classifier, highlighting serves to

suggest which changes are most likely due to re-training. Because each re-labelled

sentence can propagate changes to other parts of the Keywords Table, the same

technique is also employed after each drag-and-drop interaction.

In the final page, the Confusion Tables display confusion matrices for each

theme in a table. Shown in Figure 3.4, each column contains true/false posi-

tive/negative samples, represented as keywords in the same way as in the Keywords

Table. Aiming to facilitate the assessment of the current model state, keywords can

be clicked to reveal the respective sentences.

3.2.1 Implementation Details

TACA was implemented mostly in Python to leverage the availability of ML li-

braries. The PyQt4 framework was used in conjunction with HTML and JavaScript

for the UI. In terms of text processing, the transcript is segmented into sentences

using the NLP library NLTK5, and stop words defined in the same library are ex-

4https://github.com/pyqt
5https://www.nltk.org/
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Figure 3.4: Confusion Table page showing the most frequently occurring terms for each
confusion matrix quadrant of the selected theme.

cluded. A vector is then generated for each sentence as the arithmetic mean of the

embedding vectors representing each word in the sentence. The word embeddings

are 50-dimensional and generated using the GloVe learning algorithm pre-trained

on a generic Twitter data set6. Vectors corresponding to sentences that were coded

by the user are associated to the corresponding codes and themes and used as train-

ing data. The vectors are then used to train a gradient boosting classifier XGBoost7

to predict coding suggestions for uncoded sentences.

Due to the multi-label nature of the classification problem given that one sen-

tence can belong to more than one theme, ClassifierChain from scikit-learn8 was

used to create a voting ensemble by arranging the binary XGBoost classifiers, one

for each theme, into 10 chains in different, random orders. To address a possible

imbalance in class distribution, the MLSMOTE data augmentation algorithm for

multi-label classification (Charte et al., 2015) is applied before training the chains

of classifiers on the labelled embeddings. Following training, all uncoded sentences

in the text are predicted using a confidence threshold of 95%, based on the average

6https://nlp.stanford.edu/projects/glove
7https://xgboost.readthedocs.io/
8https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.ClassifierChain.html
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of binary predictions from the classifier chains.

When the user imports the text containing coded sentences, the data set is split

into a training set and a test set using an 80:20 ratio to train the model on 80% of the

coded sentences and generate the Confusion Tables on the remaining 20%. The pro-

cess starts automatically after the end of the setup page. Due to computational con-

straints (the tool should run offline on as many personal computers as possible), the

use of cross-validation was limited to an initial hyperparameter search for XGBoost

using a collection of restaurant reviews coded by the researchers using the F1 score9

as the model validation metric. ML concepts such as the training/validation/test

split, input features, algorithms, and hyperparameters are not presented to users as

Confusion Tables were sufficiently advanced ML concepts for non-experts (Shen et

al., 2020). Additionally, TACA does not handle ambiguous data explicitly the way

previous research in noisy data in ML proposed (Schlimmer and Granger, 1986;

Raychev et al., 2016; S. Gupta and A. Gupta, 2019), because the automatic detec-

tion of incorrect samples in the training data set was infeasible due to the lack of

ground truth in qualitative data. TACA was developed to process ambiguous data

in terms of the subjectivity involved during the manual labelling process, as well as

reviewing the coding suggestions generated by the classifier.

Multithreading enables TACA to load every page independently and simulta-

neously while prioritising the currently selected page to reduce loading times. In all

the Keywords pages, the button Re-classify creates a new training data set including

the re-labelling changes from the user on training sentences or predicted sentences,

or both. The new data set is used to train the same classifier again and generate new

classifications, before updating every page in TACA. The code is released as open

source10.
9The F1 score is a metric that combines precision (how many of the positive predictions are

correct) and recall (how many actual positives the model identifies) into a single number ranging
from 0 to 1. A higher F1 score means that the model is better at balancing these two aspects, leading
to more accurate and reliable predictions overall.

10https://github.com/fmilana/tacodingassistant
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3.3 Study
The study was reviewed and approved by the Ethics Committee of UCLIC (Project

ID No: UCLIC 2022 004 costanza). All participants were volunteers and provided

informed consent before taking part in the study (see Appendix A.3).

3.3.1 Participants

20 participants were recruited from Prolific11 (an online crowd-sourcing recruitment

platform), a psychology and language science participant pool at UCL, and among

fellow researchers from different departments in other universities. The criteria set

for recruitment were: minimum age of 18, fluency in English, at least 1 year of

experience in QDA, and no experience in ML. Participant information is reported

in Table 3.1. The gender imbalance among participants reflects the demographic

composition of the fields from which the recruitment was conducted, particularly

in areas where qualitative research is commonly undertaken. Previous research in

psychology and social sciences has found that gender can sometimes influence per-

spectives, cognitive styles, and analytical approaches (Sternberg and L.-f. Zhang,

2014; Alalouch, 2021). Although the primary objective of this work was to expose

a representative sample of QDA practitioners to IML, a promising future direction

is to conduct more gender-balanced and gender-focused user studies in this area.

3.3.2 Procedure

Participants were given TACA to install and run on their personal computers. A

study information sheet provided instructions to import the transcript, and a de-

scription of all the pages, including the interaction with the Keywords Tables and

the definitions of the terms used in the Confusion Tables (see Appendix A.4). Par-

ticipants were instructed to use the tool until no more perceived value was gained,

or after 20 minutes of use, whichever point was reached first.

5 of the 20 participants used their transcripts coded either in Microsoft Word,

NVivo, MAXQDA or Dedoose. These transcripts were from studies participants

conducted and were already analysed for publication, ranging from a few months

11https://www.prolific.co/
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Table 3.1: User study participants information.

ID Age Sex Occupation Area of research
QDA
experience
(years)

Data used Recruited from

P1 30-39 F Postdoctoral researcher HCI 3+ Own data University
P2 30-39 F PhD student HCI 3+ Own data University
P3 30-39 F Postdoctoral researcher Medicine 3+ Own data University
P4 30-39 M Postdoctoral researcher HCI 3+ Own data University
P5 27 F Postdoctoral researcher HCI 2 Own data University
P6 20-29 F Undergraduate student Psychology 1 Restaurant reviews Participant pool
P7 20-29 F Undergraduate student Psychology 1 Restaurant reviews Participant pool
P8 20-29 F Undergraduate student Social sciences 1 Restaurant reviews Participant pool
P9 20-29 M Undergraduate student Economics 1 Restaurant reviews Participant pool
P10 24 F Undisclosed Psychology 3+ Restaurant reviews Prolific
P11 20-29 F Undergraduate student Psychology 1 Restaurant reviews Participant pool
P12 30-39 M Postdoctoral researcher HCI 3+ Restaurant reviews University
P13 27 F Undisclosed Psychology 3+ Restaurant reviews Prolific
P14 20-29 F Unemployed English literature 1 Restaurant reviews Prolific
P15 20-29 F Undergraduate student Psychology 2 Restaurant reviews Participant pool
P16 30 F Undisclosed Psychology 3+ Restaurant reviews Prolific
P17 20-29 M Undergraduate student Psychology 1 Restaurant reviews Participant pool
P18 20-29 F Undergraduate student Psychology 1 Restaurant reviews Participant pool
P19 20-29 F Postgraduate student Social sciences 3+ Restaurant reviews Participant pool
P20 20-29 F Postgraduate student Digital humanities 3+ Restaurant reviews Participant pool
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to a few years prior to the study. To facilitate recruitment, a collection of 21 re-

views of restaurants published in the newspaper The Guardian12 between 2022 and

2023 was distributed to manually code by participants who did not have their own

data sets available for the study. Restaurant reviews were chosen because the topic

did not require specialised knowledge, and the reviews were expected to be diverse

yet having common themes. 21 reviews was the minimum length of the total text

(25,000 words) at which TACA performed acceptably according to initial tests. Par-

ticipants were instructed to analyse the reviews to identify 4 to 6 themes but were

not provided a code book, so they were free to use either a deductive or inductive

thematic analysis approach.

User interactions with the interface of TACA were timestamped and logged in

a text file stored locally. The logged interactions included: launching and closing

the tool, loading and switching pages, clicking on keywords to reveal the tooltip,

closing the tooltip, dragging keywords or sentences noting their position in the table,

and re-training the model. Participants were instructed to inspect the log text file,

and, if satisfied that it did not contain any sensitive information, share it with the

research team (all participants did).

Participants took part in a follow-up 20-minute, semi-structured interview fo-

cused on the experience of using TACA, including the general understanding of the

tool and specific features (see Appendix A.5). Participants were asked to have the

tool open on their machines during the interview, so that they could refer to the UI

elements when answering questions, and so that video recordings of their screen

could be revisited later to contextualise parts of the interviews (just for those who

worked on the restaurant reviews).

Participants who used their own data set were financially compensated with

£10 for a total of 1 hour spent on the study. Those who used the restaurant reviews

received £45 to account for the additional time spent coding, which made the study

duration about 4.5 hours in total. These participants were free to spread the study

engagement over multiple days, and all of them did over a period of 5-10 days.

12https://www.theguardian.com/food/restaurants+tone/reviews
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3.3.3 Analysis

Following an inductive orientation where coding and theme development was driven

by the data, the analysis aimed to investigate participants’ own perspective and un-

derstanding of IML and TACA. Audio recordings from the interviews were tran-

scribed verbatim and then analysed using inductive thematic analysis (Braun and

Clarke, 2019; Byrne, 2022). An early phase was focused on the explicit meaning of

the participants’ accounts through the familiarisation with the interview data. Next,

initial codes were drawn from the interviews using manual line-by-line coding and

over-arching themes were developed. A second coding iteration followed, where

the initial themes were revisited and modified based on the new codes. The coding

process was repeated a third time to ensure that codes were relevant and consistent

throughout the transcripts, resulting in a total of 106 codes grouped into 5 themes

(see Appendix B.1), discussed in the following section.

3.4 Findings
This section reports findings from semi-structured interviews and present situated

data on system usage based on automatic interaction logs. Participants reported the

value of an IML assistant, critical reflections on their thematic analysis, positivist

thematic analysis views, misunderstanding of ML concepts, and personal blame for

poor ML model performance.

3.4.1 System Usage from Automatic Interaction Logs

Participants spent, on average, 5:53 minutes in the Text page (SD = 3:56), 1:05

minutes in the Codes page (SD = 1:03), 1:23 minutes in the Train Keywords page

(SD = 2:10), 7:00 minutes in the Predict Keywords page (SD = 5:59), 4:12 minutes

in the All Keywords page (SD = 5:11), and 7:28 minutes in the Confusion tables

(SD = 5:14). After re-training the model, participants stayed on the Keyword Tables

68% of the time and switched to the Text page 32% of the time. Confusion tables

were only accessed subsequently, 26% of the times the model was re-trained.

The initial average F1 score of the multi-label classifier across participants was

0.58 (SD = 0.21), with a minimum score of 0.25 and a maximum score of 0.85. Out
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of the 20 participants, 12 re-trained the model at least once, and 5 re-trained it twice

or more. Of the remaining 8 participants, 5 re-labelled at least one data point but

did not re-train the model (some reported forgetting to press the re-train button), and

3 participants did neither. Of the 12 participants who re-trained the model at least

once, 7 participants re-trained once, 1 participant re-trained twice, and 4 participants

re-trained three times or more. The 17 participants who engaged in re-labelling did

so, for 63% of the time, by dragging keywords (i.e., groups of sentences) instead

of individual sentences. On average, these participants moved 6.1 keywords (SD

= 9.3) and 3.5 single sentences (SD = 8.3). Of the 6.1 keywords, 3.7 (SD = 6.2)

were moved without opening the tooltip revealing the list of sentences containing

the word.

Participants who re-labelled at least one data point re-labelled, on average, 0.7

keywords (SD = 1.7) in the Train Keywords Table (i.e., after seeing the ML out-

put they modified their own classification of sentences into themes), 2.0 (SD = 3.5)

in the Predict Keywords Table (i.e., they corrected the classifications of the ML

model of sentences into themes), and 3.3 keywords (SD = 9.7) in the All Keywords

Table (i.e., they moved sentences across themes regardless of whether they were

classified by themselves or by the model). Comparatively, no single sentences were

re-labelled in Train, 2.4 (SD = 8.2) in Predict, and 1.1 (SD = 2.7) in All (See Figure

5). The average row number keywords were re-labelled was 7.3 in the Train Key-

words Table (SD = 8.0), 22.3 in Predict (SD = 28.9), and 23.7 (SD = 17.7) in All.

Single sentences were dragged from row number 57.8 (SD = 106.8) in Predict and

35.8 (SD = 74.6) in All.

Participants who used their own data moved, on average, more keywords (8.2,

SD = 8.7), compared to participants who were given restaurant reviews (6.2, SD =

10.1). The largest portion of keywords moved by participants using their own data

was from the Predict Keywords Table (4.8, SD = 10.2), while participants using

restaurant reviews moved keywords in the All Keywords Table the most (3.2, SD

= 10.5). No relationship was found between the number of re-labelled data points

and participant demographics, i.e. age, sex, occupation, field of study/research and
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Figure 3.5: Average number of data points re-labelled in each table.

QDA experience.

3.4.2 Evaluation Strategies for Model Inspection and Reflec-

tions on Machine Learning Output

Following the initial quantitative analysis of interaction data, this section explores

the evaluation strategies participants employed, reflecting on the output of the model

and their own coding practices. When presented with the results of the model ag-

gregated as keywords in the Keywords Tables, participants spontaneously employed

exploratory strategies to critically analyse and reflect on their own coding in a va-

riety of ways. One strategy that frequently emerged was to identify connections

between keywords and themes “to see what relations they have, and if that relation

is obvious” (P1).

Keywords in the Keywords Tables were also considered effective in extracting

information and summarising results by “synthesising” (P19) a large amount of

text, “giving you very comprehensive results” (P8) to “easily conclude something

while reading the keywords included” (P7). The sorting of keywords by frequency

was reported to be “useful” (P5) in “giving you an idea of what is most common”
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(P17), to “look at things that are more salient” (P6) and to “know what kind of

work pops out” (P7).

However, not all participants found aggregating data by frequency-sorted key-

words effective. The limitation of keywords most commonly reported by partici-

pants, who failed to extract information to critically analyse their own data, con-

cerned the lack of meaningful and unexpected terms that appeared at the top of the

tables. “The problem with this is that often the most meaningful nouns are actually

never the ones that you’re not expecting and are never the ones that have the most

frequency, because the ones that are more frequent you already know them” (P4).

The output of the model presented as coding suggestions also encouraged par-

ticipants to reflect on their data and coding, and participants reported experienc-

ing increased self-awareness of their own data analysis practice and perspective.

Recognising a text excerpt as accurately coded, P12 described their own coding as

“selective” when reflecting on a specific example: “That’s an example of language

description that I haven’t coded, which it’s then accurately chosen. So I guess I’ve

been quite selective as well with the things that I chose.”

Participants further demonstrated reflexivity when interpreting the differences

between the predictions of the model and their own coding. One participant, after

noticing that “some of the [keywords] actually fit really well into that particular

theme”, began to question themselves: “and then I thought, why didn’t I include

that?” to quickly follow up with an explanation: “OK, I didn’t include it because

it was part of a particular phase that I wasn’t focusing on with the study” to then

acknowledge their personal influence on data collection and alternative interpreta-

tions: “because I chose to focus on this, that’s what participants talked about. But

actually, it’s interesting that this theme touches on additional aspects” (P5).

Participants believed that an advantage of adopting the tool in an iterative pro-

cess is to address “the main difficulty with analysing qualitative data”: “rethinking

whether what I coded is right or wrong or whether I need to change themes” as

suggestions would help either identify new themes (e.g., “maybe there’s some new

theme coming up” (P8)), or organise “better themes and sub-themes” (P10) overall.
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3.4.3 Benefits and Challenges of Data Aggregation

While individual strategies for using keywords for model inspection and output

interpretation varied, common themes emerged regarding their use for model in-

spection and batch re-labelling. In addition to facilitating data exploration and cod-

ing review, keywords enabled participants to assess the accuracy of the model and

its suggestions strategically. Most participants followed a top-down, column-by-

column approach, comparing the meaning of each keyword to the one of the theme

in order to “try to understand how the machine is doing, how it predicts” (P19).

Consequently, these participants were able to draw general conclusions such as:

“it’s been doing very well, because most of the things are under the right cate-

gories” (P14). Participants were almost always able to perceive at least some im-

provement in terms of accuracy. For example, P12 explained that “the process of

doing that is improving it” , P8 noted that “it got definitely more precise”, and P7

reported that “it made better predictions”.

Participants generally approached the interactive aspect of the system with cau-

tion, to avoid “getting rid of stuff that was maybe useful” (P15). Much like the

process of assessing the model’s accuracy, participants compared the meaning of

keywords and sentences to their respective themes to identify the “obvious” (P2,

P3) ones that “should belong somewhere else” (P1, P2).

Some participants found dragging keywords instead of single sentences “eas-

ier” (P19), “intuitive” (P17), “convenient” and “comprehensive” (P8), as they

would “not need to check the text” (P19), and could “just put all the relevant key-

words to their themes to organise them better” (P8). Others still preferred the gran-

ularity of dragging individual sentences, as they “felt like moving the keyword was

too big of a move” (P5), especially when keywords were ambiguous and represented

sentences that naturally belonged to different themes.

The drag-and-drop interactions revealed a significant misconception around

keywords from a group of participants who believed that they were re-labelling the

word itself rather than the sentences that contained it. These participants were “sur-

prised that sometimes the words seem pretty random” (P8), and that “if you move
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one keyword into the bin, you get rid of that sentence and all the keywords attached

to it” (P11). The perception that TACA worked at the level of keywords rather than

sentences confirmed a mental model mismatch: “it’s analysing keywords, since

that’s a big part. It’s got a whole section with keywords” (P15).

3.4.4 Perception of the Machine Learning Model

Having identified the specific misconceptions around the use of keywords and sen-

tences in the batch re-labelling process, this section now shifts attention to the

broader perceptions of the ML model itself and how these shaped participants’ ex-

perience using the system. Most participants clearly understood that the model was

“based on your previously trained data set”, “patterns” (P20), and “style of cate-

gorising the codes” (P9). Still, many participants viewed the model as an external

source offering objective advice, a perspective reflected in numerous observations,

such as: “It’s like an external source that’s analysing it in an objective manner in

some way and telling you whether or not you got something right or wrong” (P15).

Partially, this was due to the perceived performance of the model, which was com-

monly overestimated (“I don’t see any inaccurate suggestions as far as I’m reading

through. [...] I think it’s brilliant!” (P9)), but also to an underlying assumption that

coding can be objectively correct or incorrect.

Confusion tables were introduced with the intention to enable model inspec-

tion, allowing non-expert users in ML to evaluate the performance of the model

across each theme. The following exchange exemplifies the perception of Confu-

sion Tables:

Interviewer: “These were ones that you did not code under ‘privacy’,

but the model did.”

P1: “OK, so these could be the stuff that I might have missed then.”

The sentences shown under the false positives and false negatives columns

were initially intended to allow participants to identify where the model failed.

However, almost every participant seems to have considered them as an indica-

tion of the accuracy of their own coding: “OK, maybe I misread something or there
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is another interpretation. I think I looked at these more as suggestions” (P2).

In some cases, the impression of the false positives and false negatives columns

as suggestions developed only after comparing the outcome of the model to their

own, differing classifications, and agreeing with the outcome of the model: “I think

I’m a bit conflicted because I came with the impression that it’s a way for me to

check if the model is performing well, but I misunderstood it, because now I’m

the one that’s left something out” (P5). In other cases, this impression seemed to

have arisen independently from exposure to situations where they concurred with

the model’s outcome. These participants were ready to question their own coding,

but rarely the coding of the model: “The model must have some reasoning for

categorising these words into the false negatives.” (P9)

Nevertheless, there was still value found in the Confusion Tables when eval-

uating the model. One approach involved “forming an opinion depending on the

quality of the false positives” (P10): “if you get a bunch of false positives, then that

would mean that the things that were chosen from the program maybe shouldn’t be

as trusted and should be checked through” (P15). Analysing “what [the model] is

suggesting and maybe what it’s also not suggesting” was an effective strategy “to

see what the model thinks” (P5).

3.4.5 Personal Blame for Poor Model Performance

The perception of an external source of objective advice naturally revealed a sec-

ond theme from the interviews: personal blame for poor model performance. Par-

ticipants were able to use the Text tab, Keywords Tables and Confusion Tables to

detect instances where the behaviour of the model was unexpected, evaluating the

perceived accuracy of the suggestions by comparing them to their own coding. The

consequence of the conflicting classifications was a widespread tendency to sponta-

neously attribute the cause of inaccuracy to a variety of factors that were exclusively

traceable to the participants themselves, never to the quality of the model.

Participants (including those with greater experience in QDA) often mentioned

their own lack of clarity in the themes and codes chosen: “I might have included

parts that aren’t very useful to the specific theme that they fall under” (P15), and “I
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might have mixed some of the concepts” (P16). “It probably has to do with some

error from my end”, since “the data set that I gave to the tool might have been a

little bit at fault” (P20): “my themes weren’t the clearest” (P6) or “not enough”

(P10).

From the understanding that the model was trained on their own data set, par-

ticipants also inferred that “the coding should be based on a large amount of data”

(P19). “If I hadn’t been coding much, then sometimes the results weren’t what I

expected because apparently the tool didn’t have much to learn from” (P7). Partic-

ipants also frequently mentioned the ambiguous nature of qualitative data to justify

the inaccurate suggestions given by the model: “I feel like, if a word has different

meanings, then that’s where the confusion comes” (P16).

The quality of the model was never questioned by any of the participants. In-

stead, the justifications to explain the inaccurate suggestions of the model were con-

sistently unprompted, and given when participants were asked to identify situations

where they believed the model performed inadequately.

3.4.6 Perceived and Anticipated Use of Interactive Machine

Learning in Qualitative Data Analysis

Finally, this section considers the wider context of integrating IML in existing data

analysis workflows. Participants recognised that analysing large quantities of text is

time-consuming and welcomed the idea of implementing ML, acknowledging that

TACA can “take a lot of tedious work off your hands” (P14) by accelerating the

process of cross-checking for mistakes, identifying missed insights and nuances,

reformulating codes and organising ideas.

The desire to partially automate the coding phase was shared by many partici-

pants who envisioned an alternative use-case of the tool as one that could potentially

save them even more time by “not needing to code as many sentences, because it

could predict my generating pattern and create codes based on my behaviour” (P9).

Nevertheless, there was a clearly perceived distinction between the researcher

and the tool. “I think the role of the tool is to organise or to scaffold the thinking of

the researcher. It is a way for the researcher to test themselves and it could be quite
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helpful to mirror or reflect my processes as a researcher” (P4). Participants recog-

nised that, instead of replacing the researcher, TACA would complement them by

cross-checking data, evaluating saturation, organising existing ideas and identifying

new insights.

Implicitly or explicitly, participants illustrated the potential influence of the

tool on the manual coding phase of thematic analysis. Expecting the ML com-

ponent of TACA to classify additional sentences for them, some participants who

coded the restaurant reviews realised they “could start becoming more lax with how

thoroughly [they] coded everything” towards the end of the text, since “the AI has

probably got enough information anyway” (P17).

3.5 Discussion
Through an analysis of interaction logs and semi-structured interviews, the situ-

ated account provided described how participants analysed qualitative data using

an IML system. The findings demonstrate TACA as a functioning and usable tool

to identify the benefits and challenges of enabling non-ML experts to engage with

IML. These findings have implications that extend beyond the scope of the tool and

can be applied to various domains outside QDA. The following three sections of

the discussion focus on how IML supports reflexivity in data analysis, the tensions

between the subjectivity of data and the expected objectivity of the ML model, and

the general perception of ML driven by the experimental UI features explored to

facilitate the IML cycle.

3.5.1 Supporting Reflexivity with Interactive Machine Learning

Participants recognised and valued the process of reviewing their own analysis,

identifying patterns, gaining deeper insights, and re-interpreting findings using

TACA. The advantages of using IML in QDA reported by the participants confirm

the results of Gebreegziabher et al., 2023, which highlight the importance of the

ability of researchers to refine and evolve their coding frameworks in collaboration

with AI tools. Marathe and Toyama, 2018 found that researchers desire automation

only after having developed a codebook and coded a subset of data, particularly
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by extending their coding to unseen data, and most of the participants in the study

confirmed this in the interviews. However, the benefits of IML extend beyond the

automation and acceleration of data analysis.

More generally, participants also critically reflected on their own analysis af-

ter employing a variety of strategies to explore the ML output through the different

parts of TACA. Previous research on IML states that result visualisation techniques

can enable users to assess the quality of the model and inform how to proceed in

training (Amershi, 2011). Because the study involved subjective, ambiguous data

with no objective ground truth, participants utilised result visualisation to evaluate

not only the performance of the model, but their own analysis too. These reflec-

tive practices were partly captured in the TACA interaction logs, which revealed

that, in the Train Keywords Table, participants modified their own classification of

sentences into themes.

In “Machine learners: Archaeology of a data practice”, Mackenzie, 2017 ar-

gues that ML not only transforms the nature of knowledge but also impacts the

practice of critical thoughts “as a mode of experimentation on one’s own conduct,

thinking, and ways of being”. During the interviews, many participants described

the influence of their own presence and perspective as researchers on the findings

when reflecting on and evaluating the differences between the model and their cod-

ing. This is crucial, since reflexivity is considered one of the pillars of critical

research practices across various fields, including social sciences, humanities, and

education (Fontana, 2004; Jootun, McGhee, and Marland, 2009; Braun and Clarke,

2019; Holmes, 2020). Reflexivity allows researchers to critically assess their own

influence on the research process and outcomes, and in the study, was a reported

benefit of evaluating the coding suggestions generated by the model.

It seems that reflexivity is driven by a tendency to justify the choices made

during the manual coding phase of the analysis when faced with contrasting classi-

fications from the model. Since most of the participants considered false positives

and false negatives in the Confusion Table not as instances where the model failed,

but sentences that they had possibly miscategorised, recognising their own perspec-
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tive and possible bias towards the data was a direct consequence of questioning their

own analysis.

Participants used TACA to reflect critically on their thematic analysis and often

reassessed their own coding decisions when presented with the model’s suggestions.

This behaviour suggests that IML tools can foster a deeper engagement with data

and encourage users to critically evaluate their own work. Reflexivity can be bene-

ficial in various other fields where subjective interpretation is crucial. For example,

in healthcare research, reflexivity can help medical professionals examine their di-

agnostic processes and treatment decisions, leading to more patient-centred care

and improved health outcomes. Similarly, reflexivity can encourage researchers in

cultural studies to examine their own biases and cultural assumptions, driving more

nuanced and contextually rich analyses. Therefore, IML systems should be de-

signed to promote critical engagement with data by providing clear and insightful

feedback on both generated classifications and manually labelled data samples to

allow for comparisons in a similar fashion to Confusion Tables in TACA.

3.5.2 Balancing Objectivity and Subjectivity in Interactive Ma-

chine Learning

The study results emphasise reflexivity as a key benefit of IML, which is likely

explained by the fact that most participants perceived the model as an external,

objective source of advice, despite the subjective nature of the data involved. Rather

than reviewing false positive and false negative samples as points where the model

failed to classify their manually coded sentences, the participants often considered

these belonging to an equally valid, if not better, interpretation of the data. This

perception could also explain why participants re-labelled fewer data points than

expected and re-trained the model only a limited number of times.

A recent study by Q. Yang, Suh, et al., 2018 revealed that non-experts are gen-

erally more satisfied and trusting toward the outcome of ML compared to their pro-

fessional counterparts, which can explain why participants almost always blamed

themselves when recognising that the model was performing poorly on their data

set. In the specific context of QDA, a significant result of this perception is a shift
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towards a more positivist view. In the interviews, participants frequently mentioned

the importance of subjectivity in their own analysis, but they just as often used

terms like “correct”, “incorrect”, “right” or “wrong”, when evaluating their own

coding or the output of the model. Supposedly, this could also have been influ-

enced by the underlying goal of improving the accuracy of the model through the

process of re-labelling and re-training, and the UI of TACA that displays termi-

nology that are standard in ML, such as the Confusion Tables (with “true posi-

tives,” “false negatives”, etc.). This terminology was adopted because it is standard

in ML, it is employed in various other fields, including inferential statistics and

healthcare, and would be more accessible to non-experts compared to more com-

plex measures, which can be overwhelming and misleading (Beauxis-Aussalet and

Hardman, 2014).

In fact, while recent work has found that non-experts often struggle with the

standard terminologies and structural design of confusion matrices (Shen et al.,

2020), most participants in the study clearly understood how to interpret the con-

fusion tables and rarely required guidance in the interviews. Still, the terminology

used might have inadvertently contributed to the perceived objectivity of the model,

despite the fact that most participants recognised that the model was trained on

their own, subjectively labelled data. In the Algorithmic Experience framework,

algorithmic awareness refers to the users’ understanding and knowledge of how al-

gorithms function and impact their experience, and what influence the user can have

on the results (Alvarado and Waern, 2018). In the study, participants clearly recog-

nised that re-labelling keywords was contributing to a closer alignment of the ML

model to their interpretation of data, but they also demonstrated varying degrees of

awareness regarding the ML processes embedded.

The quantification of data by qualitative researchers exposed to ML seems to

be a pitfall that non-experts are commonly susceptible to, but the false perception

of correctness seems prevalent in AI and extends beyond this group. The uncer-

tainty, ambiguity and bias of ground truth data used to train ML models is rarely

questioned, as highlighted by recent research observing how such data sets are con-
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structed (Miceli, Schuessler, and T. Yang, 2020). The reason might be that, in the

ML academic communities, contributions are determined by the modelling work

that takes place once the data is “cleaned”. In reality, even within application do-

mains where less subjectivity is at play, numerous external factors can significantly

influence the process of data annotation (Miceli, Schuessler, and T. Yang, 2020).

Subjectivity in ML is also manifested in the processes of meaning-making, mod-

elling choices, and data idiosyncrasies (Javed et al., 2021; Waseem et al., 2021), so,

while the participants’ perception that ML is intrinsically “objective” is not surpris-

ing, it should certainly be challenged.

Implementing interpretability techniques in TACA was beyond the scope of

this work, as the aim of the study was to observe how participants would interact

with the basic version of an IML tool without introducing additional complexity.

However, the findings reveal a need for transparency in IML tools to help users un-

derstand the inherent limitations of ML models. Transparency has been found to

encourage users to provide more labels (Rashid et al., 2006) and with higher ac-

curacy (Rosenthal and Dey, 2010). Explanations can mitigate the perception of an

external, objective model and the consequent self-blame for errors by clearly com-

municating the probabilistic nature of ML classification. In fact, explanations have

been found to increase user satisfaction with the output of the recommender (Amer-

shi, Cakmak, et al., 2014) and, more notably, calibrate trust in the model, especially

for non-experts (Ribeiro, Singh, and Guestrin, 2016; Dudley and Kristensson, 2018;

Ayobi et al., 2021). Previous work has proposed guidelines and design implications

for exposing Explainable AI to a general audience with the use of metaphors, visual

aids, and interactive elements (Severes et al., 2023), and the results support the need

of these recommendations for the use of explanations not just for ML practitioners

in model diagnostics.

3.5.3 Understanding Perceptions of Machine Learning through

User Interface Features

Building on the insights into the balance between objectivity and subjectivity in

IML, this section investigates in more depth how specific UI features influenced
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participants’ perceptions and interactions with the model. The frequency-based

keywords in the Confusion Tables and Keywords Tables were intended to provide

participants with meaningful insights about the current state of the model, and also

allow them to efficiently manipulate the large and high-dimensional data set for

re-training the model, which is normally challenging. The findings regarding key-

words are specific to the UI of TACA and not universally applicable to all uses of

IML. However, whether data aggregation techniques can facilitate model inspection

and feedback assignment is an open question, and the design of similar techniques

could benefit from the principles learned through the participants’ experience with

TACA.

The study evaluated the presence of confusion matrices displayed as tables

containing representative samples in the model inspection phase of IML. Partici-

pants spent, on average, around 6:30 minutes on these tables, switching to these

pages after re-training the model most of the times. The results show that the iden-

tification of misclassifications in the inspection of the representative samples falling

under “false positives” and “false negatives” can inform model evaluation by facil-

itating the semantic comparison between keyword and theme in a similar manner

to the Keywords Tables. The findings revealed that most participants naturally took

different approaches to explore the output in the Keywords Tables. Most of the par-

ticipants were confident in their assessment of the model after either comparing the

meaning of each keyword to the theme or identifying semantic relations between

the keywords in the same columns.

“Algorithmic control” in Algorithmic Experience refers to the ability of users

to influence and and modify the behaviour of algorithms to suit their needs and

preferences (Alvarado and Waern, 2018). The study observed that participants ac-

tively engaged in activities that allowed them to re-classify data points and adjust

model outputs based on their iterative feedback. A specific option for algorithmic

user-control is to let users selectively turn off at least some data sources that are in-

fluencing the algorithm, and, in fact, a significant number of keywords were moved

to the bin (to un-label groups of sentences).
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The logged interactions revealed that participants preferred to re-label multi-

ple samples simultaneously by dragging keywords rather than re-labelling individ-

ual sentences. Most of the keyword were re-labelled without revealing the list of

associated sentences, since participants reported comparing the semantic meaning

of each keyword directly to the allocated theme. These results suggest that interac-

tions supporting simultaneously re-labelling multiple, semantically similar samples

can be effective in the feedback assignment phase of the IML cycle, reducing the

significant effort required to label data points in large data sets (Wong et al., 2011;

Groce et al., 2014; Ribeiro, Singh, and Guestrin, 2016).

However, participants were generally hesitant to interact with the Keywords

Tables and re-labelled fewer data points than expected. Dragging and dropping

whole keywords was considered by some too big of a move. This behaviour reveals

a limitation of keywords as implemented in TACA, as the interface does not allow

users to undo changes and lacks mechanisms for previewing potential modifications

before committing to them. In addition to enabling users to revert to a previous

stage of the model, it can be hypothesised that anticipating the resulting changes

before re-training could have increased the participants’ confidence in re-labelling

data points. Interfaces for feedback assignment in IML requires the most careful

design in terms of both elements and interaction techniques (Dudley and Kristens-

son, 2018), and visualising anticipated changes can introduce transparency in the

system, greatly affecting the quality of the response elicited from users (Amershi,

Cakmak, et al., 2014).

IML applications often assume that users possess domain knowledge, which

is crucial for accurate model inspection and feedback (Amershi, Cakmak, et al.,

2014). Therefore, the initial intention was to recruit only participants who had their

own coded data to analyse, but due to recruitment challenges, it was decided to

provide newspaper restaurant reviews to those who did not have any data available.

Eventually, only 5 out of 20 participants analysed their own transcripts. Compared

to this group, the other participants likely had a more limited understanding of the

data, which may have affected their ability to provide effective model feedback
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and thus may not have engaged as critically with the output of the model. This

would explain why this group moved fewer keywords on average. Additionally,

the group that used their own data seemed to be slightly more critical of the model

suggestions, preferring to re-label more sentences that were classified by the model

rather than those that were manually labelled in their own analysis.

The decision to use keywords as a data aggregation technique also introduced

misconceptions about keywords and sentences. Some participants believed they

were re-labelling individual words instead of the sentences that contained them and

that, consequently, TACA operated at the word level. This can be recognised as

an additional limitation of using keywords as handles, but the need for users to

manipulate data sets that are challenging to represent and summarise due to their

size and dimensionality is an acknowledged existing challenge of IML. It is possible

to speculate that the limitation observed in this research is not exclusive to text.

Different types of data, including images, audio, and other high-dimensional data

forms are likely to present similar challenges when aggregation is used to facilitate

model output inspection and batch re-labelling.

Other applications of ML on text, such as sentiment analysis and information

retrieval, could benefit from aggregation to support the IML cycle. The findings

suggest that this approach can be effective, but it is essential to design around these

features carefully to avoid misinterpretation. IML tools that aggregate data points

should include complementary features that help users understand the relationship

between grouped data and re-training the model. For example, visualisations that

map aggregations to their corresponding set of individual data points could provide

users with additional context. Also, systems could implement tooltips, detailed

explanations, and interactive tutorials that guide users through the process of how

data points are aggregated and the implications on the re-labelling process.

3.6 Conclusion
This chapter reported on a user study where 20 participants without prior ML ex-

perience used TACA, a novel IML application designed and developed to enable



3.6. Conclusion 71

the study. The focus was on thematic analysis as a practical application of IML:

thematic analysis involves individual interpretation of ambiguous data and hence it

is suited for and can benefit from the iterative customisation of the model. The par-

ticipants had at least one year of experience in thematic analysis, and used TACA to

refine the analysis of a data set from their own qualitative research or one provided

to them (newspaper restaurant reviews), if they did not have data available.

TACA was effective in exposing the participants to ML and apply it on their

data. Participants recognised the value of incorporating ML in the thematic anal-

ysis workflow as the presence of coding suggestions encouraged a more critical

analysis of data. Keywords and Confusion Tables, features of the TACA UI, also

supported the model inspection and feedback assignment phases of the IML cycle

but introduced misconceptions around the mental model of the tool. Finally, the

findings suggest that users with no experience in ML tend to perceive the model as

an external, objective entity in the absence of ground truth, and consequently blame

themselves when the model performs poorly.

IML has significant advantages over conventional ML, but the success of this

alternative approach is strongly dependent on our understanding of user perception

and interaction with ML models. Hopefully, this work can serve as a practical

example of a contribution facing this direction and stimulate further interest in this

particular intersection between HCI and AI.

The limitations of this study include the unfamiliarity with the data of the

participants using the restaurant reviews, the infrequent interaction with the ML

model, and the lack of genuine motivation to extend their analysis. The next chap-

ter presents an autoethnography on TACA to address these limitations and further

investigate the application of IML to QDA.



Chapter 4

An Autoethnography on the

Thematic Analysis Coding Assistant

Despite the growing interest in using ML-driven tools, such as TACA, in qualitative

analysis, there is limited research exploring how ML is experienced by users first-

hand over extended periods. The short-term nature of user studies at the intersection

of HCI and AI means that behaviour can be measured and generalised but does not

fully capture how it evolves as people continue to interact with ML. Furthermore,

since user studies often take place in siloed settings, participants are almost never

motivated by long-term investment in the outcome of their interactions.

Moreover, the key findings of the study reported in Chapter 3 included that par-

ticipants perceived the model as objective and authoritative, attributing any issues

with performance to their own input data. Consequently, the participants engaged

only to a limited extent with the IML features of TACA. In contrast, this chapter re-

ports on a follow-up study designed to place more emphasis on these IML features:

an autoethnography conducted to answer the following question:

• RQ3: How can IML be used to support the analysis of ambiguous data?

The purpose of the autoethnography is threefold: 1) to collect personal re-

flections on how the user interface and feedback mechanisms of TACA influenced

decision-making, re-labelling strategies, and overall workflow; 2) to explore in

greater depth personal perceptions, thoughts, and emotions during the interaction

with the ML model; and 3) to compare the results obtained from extending the
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analysis of the interviews on TACA with the outcomes of the initial manual analy-

sis reported in the previous chapter. In more general terms, the goal is to uncover

nuances in the interaction that may not have been evident during the user study,

as well as additional insights that leverage the roles of developer, researcher, and

participant with experience in both HCI and AI.

This work appears to be the first autoethnography on IML. Addressing this re-

search gap is important because the iterative cycle of IML is heavily influenced by

critical thinking, decision making, and perception of the model, as revealed in the

user study with TACA. A detailed exploration of how one’s own biases, expecta-

tions and expertise can provide valuable insights for designing more effective inter-

actions with ML that better account for user experience. Additionally, while prior

work has applied autoethnography at early design stages, this work contributes by

demonstrating how autoethnography can generate new insights even after a system

has been designed and evaluated.

The work in this chapter has been presented as a paper under review for the

ACM Conference on Intelligent User Interfaces (IUI) in 2025:

Federico Milana, Enrico Costanza, Mirco Musolesi, and Amid Ayobi.

“Understanding Interactive Machine Learning through an Autoethnog-

raphy of the Thematic Analysis Coding Assistant (TACA)”. Proceed-

ings of the ACM on Human-Computer Interaction (IUI)

The following section introduces self-study research methods, outlining how

approaches like autoethnography provide a framework for understanding complex,

lived experiences in HCI, and how these can be applied to AI systems.

4.1 Self-study Research Methods

4.1.1 Autoethnography

Recent epistemological shifts in social sciences suggest that facts and truths are

intrinsically shaped by the paradigms and vocabularies used (Rorty, 1994; Kuhn,

1997). This philosophy rejects the idea of universal narratives in favour of more

localised and contextual understanding (Lyotard, 1984; De Certeau and Rendall,
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2004), emphasising the complex role stories play in shaping morals, ethics, and

sense making (Bochner, 1984; Fisher, 1984; Bochner, 1994; Tony E Adams, 2008).

In line with this perspective, autoethnography is a research method that combines

ethnographic fieldwork with personal narrative to describe and systematically anal-

yse personal experiences (Ellis, Tony E. Adams, and Bochner, 2011). Increasingly

used within qualitative research, autoethnography differs from traditional ethnogra-

phy by prioritising the researcher’s own personal narrative, providing insider per-

spective on the subject matter.

According to Ellis, Tony E. Adams, and Bochner, 2011, the three fundamental

pillars of autoethnoraphy are 1) reliability, 2) validity and 3) generalisability. Re-

liability refers to the credibility of the narrator, whether the experiences described

are plausible, genuinely believed, and not distorted into fiction (Bochner, 2002).

Validity refers to the extent to which the work evokes a sense of lifelike, believable

experiences, and emphasises the coherence of the “story” and how it relates to its

readers (Ellis, 2004). In the absence of large random samples, generalisability is

instead tested by the readers, who determine whether the story resonates with their

own experience or illuminates unfamiliar cultural processes (Flick, 2020).

4.1.2 Self-study in Human-Computer Interaction

Self-study is not new in HCI (O’Kane, Y. Rogers, and Blandford, 2014; Desjardins,

Tomico, et al., 2021). In general, however, while traditional autoethnographies fo-

cus on drawing lessons about social and cultural “texts, experiences, beliefs and

practices” (Tony E. Adams, Ellis, and Jones, 2017), many HCI autoethnographies

shift the emphasis to understanding how the features of a design shape and reflect in-

teractions with technology (W. Gaver and F. Gaver, 2023). Researchers have applied

different autoethnographic methods at various stages of the design process, such as

informing user study design (D. Jain et al., 2018), testing preliminary prototypes

(Bergman and Haitani, 2000; Buchenau and Suri, 2000), and as part of iterative

design cycles (Neustaedter and Sengers, 2012; Pijnappel and F. ’. Mueller, 2014; S.

Jain and Wallace, 2019). Adopting the role of participant has allowed researchers

to gain a deeper understanding of user experiences that may be difficult or impossi-
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ble to access using traditional methods (Neustaedter and Sengers, 2012; Desjardins

and Ball, 2018). For example, researchers who become participants themselves are

able to empathise with users, as seen in studies where they experience frustrations

and limitations of a technology first-hand (Buchenau and Suri, 2000; Höök, 2010;

O’Kane, Y. Rogers, and Blandford, 2014).

Self-study methods have particular value for artists and those engaging in artis-

tic and arts-based research who want to offer deeply personal insights into design

processes, exploration, and user experience (Musgrave, 2019; Bartleet, 2021; Ec-

clesia, 2023). For example, Mainsbridge, 2022 offered a personal account of work-

ing with motion-sensing interfaces the underlying qualities and meanings of per-

formance actions in live and recorded contexts. Similarly, Väkevä, Mekler, and

Lindqvist, 2024 detailed intimate insights into the trajectory and emotional qualities

of personally meaningful and transformative videogame experiences. These stud-

ies show how self-study can illuminate the subjective and experiential dimensions

of research, offering nuanced perspectives that might be overlooked in traditional

approaches.

4.1.3 Self-built systems

The use of first-person research methods that involve self-built systems has also

been explored in HCI. Some authors make a distinction between autoethnography

and autobiographical design, in that the latter is a form of autoethnography that is

located within the design cycle of a system (Neustaedter and Sengers, 2012; Des-

jardins, Tomico, et al., 2021; Bang et al., 2024). In reality, the boundary is not

always distinct, as it is not uncommon for autoethnographies to conclude with a spe-

cific design guidelines section or a concrete set of opportunities for design (Aoki,

2007; Höök, 2010; Pijnappel and F. ’. Mueller, 2014; Lucero, 2018).

W. Gaver and F. Gaver, 2023 provide an “autoethnographical account” of their

experiences using two self-built communication devices using coloured light and

discuss the features that have proven important in mediating feelings of connection.

They argue that the strength of this approach lies in their direct, long-term access to

their lived experiences with the system, offering a first-person perspective instead of
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relying on third-person observations or descriptive data. Similarly, autobiographical

design leverages long-term usage to deeply understand the effects of the system

on real practice as opposed to novelty effects (Neustaedter and Sengers, 2012).

This level of understanding is difficult to obtain with other research methods, as

it requires approaches that capture real everyday usage, which is often missed in

short-term evaluations or siloed studies.

Seminal work discussing “tensions” in first-person research methods on self-

built systems comes from Desjardins and Ball, 2018. Key challenges include defin-

ing genuine needs, balancing participation from others, managing intimacy and pri-

vacy, navigating the reflexive relationship between design and research, and ad-

dressing the complexities of reporting from the dual perspective of researcher and

participant. To address these tensions, the authors suggest emphasising sincerity

and transparency in documenting motivations, carefully managing collaboration

and authority, and being inventive in reporting and reflecting on personal experi-

ences.

4.1.4 Self-study in Artificial Intelligence

Only recently have some studies explored the application of first-person research

methods to ML systems. Arvidsson and Noll, 2023 present an autoethnography of

the authors’ attempt to build an ML system to mitigate discrimination in asylum law

decisions. Through their experiences, they report how they realised that, instead of

eliminating discrimination, the system simply shifted the discretionary space from

human decision making to the data wrangling process, where biases could still man-

ifest. With autoethnography, the authors were able to critically examine their role as

legal scholars navigating the tech field, revealing inherent complications and biases

that arise when merging human judgement with ML tools.

Work from Faith, 2024 explores the author’s personal journey of reflection and

intellectual development through extensive interactions with ChatGPT. Using an au-

toethnographic approach, the author narrates how initial utilitarian interactions with

the system evolved into deeper cognitive and emotional explorations over time. No-

tably, autoethnography allowed the author to identify and report hidden biases and
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behaviours that were previously overlooked, namely patterns of impatience, frus-

tration, and high expectations. Similarly, King and Prasetyo, 2023 explore their

experiences using generative AI for educational purposes and examine how their

expectations and emotional responses shifted over time, providing insights for edu-

cators considering integrating AI in their teaching practices.

Based on the literature, self-study research methods seem to be particularly

effective in exposing expectations, biases, and behaviours around AI. Unlike tradi-

tional user studies, which often focus on short-term interactions, self-study allows

extended, genuine use of systems aimed at achieving real-world goals. This ap-

proach enables researchers to observe how cognitive processes evolve as they inter-

act with AI in a more natural context. Capturing these patterns is important because

ML applications are often integrated into daily workflows, where they influence

decision making, user behaviour, and system performance in ways that become ap-

parent only through sustained and goal-oriented use.

4.2 Motivation for Autoethnography
The purpose of this work is to extend the findings of the user study on TACA pre-

sented in Chapter 3. The user study revealed that participants, all non-experts in

ML, were able to critically reflect on their qualitative analysis, adapt their interpre-

tive stance, and gain new thematic insights through the use of the tool. The study

also highlighted common misconceptions about ML concepts, as participants often

viewed the model as an objective source of advice, attributing poor performance

to their own analysis rather than to the system. Although the user study provided

valuable insights into how non-experts interact with ML systems, there are several

aspects of the study that could be addressed with autoethnography to gain a more

comprehensive understanding of these interactions.

One aspect concerns the familiarity with the data that the participants used.

IML applications generally assume a considerable degree of domain knowledge

from the end user, as general familiarity with the data is required for accurate model

inspection and feedback assignment (Amershi, Cakmak, et al., 2014). However, of
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the 20 participants, only 5 imported transcripts from their own research, while the

others received a collection of newspaper restaurant reviews to analyse beforehand

(this compromise was necessary due to difficulties in participant recruitment, as eli-

gible participants rarely had an analysed data set available or that met the structural

requirements of the tool). As a result, those who used restaurant reviews may not

have had the level of contextual understanding that could improve their ability to

accurately inspect and provide feedback to the ML model. In contrast, I was highly

familiar with my own data set and analysis, which was conducted shortly before this

work, as opposed to some participants’. I also had access to all the original data,

including codes and themes that were merged during the analysis, which I could

revisit while using TACA.

Another reason for conducting an autoethnography is that participants in the

user study interacted with the ML model relatively infrequently. Of the 20 partici-

pants, 12 re-trained the model at least once, and 5 re-trained it twice or more. This

was largely due to their tendency, as non-experts, to overestimate the accuracy of

the suggestions of the model. Moreover, the time the tool takes to re-train the model

and load the tables usually takes a few minutes, which may have discouraged fre-

quent re-training. Therefore, the insights gained from their experiences within the

iterative IML cycle were relatively limited. Instead, autoethnography could provide

more opportunities to explore the ways in which iterative feedback, trust, and crit-

ical thinking develop throughout the cycle by making use of the full potential of

TACA.

An additional aspect to consider is the difference in motivation between the

participants in the user study and my own as the researcher. Participants used TACA

primarily to complete a task for the study and, in all cases, did not use the tool to

truly improve their analysis, as they had no intention of utilising the insights they

gained. As discussed in the literature, self-study allows extended and genuine use

of systems aimed at achieving real-world goals to deeply understand the effects of

the system on real practice (Neustaedter and Sengers, 2012). The use of TACA in

this autoethnography is not only sustained but also genuine, because I was directly
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invested in the insights gained through the analysis reported in this work.

Only non-experts in ML were eligible for recruitment in the user study, as one

of the advantages of IML systems is that even users without technical expertise in

ML can refine and improve the model through iterative feedback. In contrast, my

experience with ML means that my behaviours and insights when interacting with

the model are likely to differ significantly from those of the participants. For exam-

ple, a study by Q. Yang, Suh, et al., 2018 revealed that non-experts are generally

more satisfied and trusting toward the outcome of ML compared to their profes-

sional counterparts. This perspective is important because it allows for a valuable

comparison between expert and non-expert user behaviour and insights into how to

tailor ML applications to meet the needs of both groups.

Finally, autoethnography allows for the direct comparison between the results

of performing a qualitative data analysis manually on the user study interviews and

the results obtained when extending the analysis with TACA. This comparison pro-

vides a unique perspective, as I am able to evaluate my analysis before and after

using the tool, focusing on how TACA influences the analytical processes. In con-

trast, participants in the user study inevitably spent much of their attention learning

how the tool works, how to interact with its features, and how to interpret the results,

which likely limited their ability to critically assess the analysis itself.

4.3 Reflexivity and Positionality
The positionality of the researcher arguably affects all aspects of their work (Fassl

and Krombholz, 2023). This is especially true in autoethnography, which focuses

on personal experiences. To provide the context needed to appropriately interpret

the findings, this section outlines my educational background, prior experience, and

positionality with respect to qualitative research and artificial intelligence.

My higher educational background began with a BSc in Computer Science

which I chose after developing an interest in coding through a school project. My

passion in computer science has always been tied to the rational structure of pro-

gramming, as well as the reward of developing final products, whether algorithms
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or applications. Finding HCI my favourite module of the course, I chose to pursue

an MSc and a Ph.D. in the same field. In HCI, I found that I could both create

applications and contribute to research by uncovering novel insights, particularly in

how people interact with systems, how they navigate interfaces, and how technol-

ogy shapes behaviours. A particularly rewarding moment occurred during my MSc

final project, where I found statistical significance in a quantitative analysis of user

behaviour around chatbots. My first exposure to working with AI was during this

study. I found the experience particularly fascinating as it felt as though the system

was operating beyond what I had explicitly coded, while simultaneously opening up

unlimited opportunities for research into how people understand behave and interact

with autonomous systems.

Validation from tangible results has always been the driving factor of my work.

For this reason, transitioning from the logical and rational perspective of coding

and quantitative research to qualitative research was challenging. The qualitative

research process is subjective by nature (Braun and Clarke, 2019), and the need

to obtain measurable results to validate my work was more difficult to meet. The

shift from a somewhat positivist mindset to one that embraces complexity and am-

biguity was necessary to broaden my understanding of human-AI interaction, and

it occurred when I conducted a thematic analysis on interviews with participants

in the study on TACA. During this process, I came to understand that conducting

qualitative research is a systematic and rigorous process following several estab-

lished guidelines and frameworks that can support the validity and reliability of the

findings. Additionally, I realised that subjectivity does not invalidate the outcome,

instead, it can often add depth and nuance to understanding human experiences.

Although I believe I have moved beyond my initial biases, I recognise that I still

approach qualitative research from an initial contrasting standpoint, shaped by my

background in computer science and AI.

My interest in AI has grown significantly in the past few years as a result of the

ongoing period of rapid progress in the field. I find it fascinating that algorithms can

learn and adapt independently, achieving remarkable results that can sometimes sur-
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pass human performance. I have incorporated AI applications in both my work and

my life, using large language models to program more efficiently and answer gen-

eral questions, often replacing traditional search engines. I have also experimented

with image generation as a hobby and have learned more about machine learning

theory for fun. Although I have first-hand experience of the limitations of AI and

also recognise the great potential risks, my personal view of AI is undoubtedly pos-

itive. Admittedly, this perspective is heavily influenced by my own participation

in AI research, where I am arguably less personally affected by concerns such as

job displacement than those outside the field. However, I am convinced that AI

can be used more as a tool to enhance human capabilities by improving efficiency,

creativity, and problem solving in various industries rather than replacing human

involvement altogether.

4.4 Method

4.4.1 Previous Qualitative Data Analysis Results

The autoethnography involves the use of a previously analysed data set: the semi-

structured interview transcripts from the previous user study on understanding inter-

action with ML through TACA. These were transcribed verbatim from audio record-

ings then analysed using inductive thematic analysis. The content of the themes

identified and how they contributed to the findings are discussed in this section. See

Appendix B.1 for all the codes belonging to each theme.

4.4.1.1 Design Choices

This theme includes all comments from participants on the structural elements of

the tool, such as the use of tables, colour schemes, and tooltips. These elements

influenced how participants navigated the user interface of TACA and understood

the output of the ML model. The theme includes discussions around the perceived

and measured advantages and limitations of the design choices made when devel-

oping the tool. These insights contributed to the findings by showing how the UI

significantly impacted the user’s ability to engage with and understand ML models.
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4.4.1.2 Data Review

This theme captures how participants approached reviewing their own analysis and

the suggestions of the model within TACA. It includes how they explored patterns in

the data, identified commonalities, and reflected on human error in qualitative data

analysis, using the tool to better understand and re-evaluate their data. The find-

ings showed that participants valued the ability of the tool to support reflection and

re-evaluation of their own analysis. By reviewing their data, participants demon-

strated increased self-awareness of coding decisions, especially when the model

contradicted their initial interpretation.

4.4.1.3 Using TACA/Machine Learning in Qualitative Data Analy-

sis

Here, participants reflected on the efficiency and limitations of using TACA and ML

to support qualitative data analysis. They compared TACA to other tools, its pur-

pose, use case, and potential to streamline the analysis process within their existing

workflows. This theme contributed to the discussion by illustrating how partici-

pants appreciated the potential of ML to reduce manual labour of coding, including

reflections on the need to complement rather than replace human interpretation.

4.4.1.4 Perception of the Model

Participants described how they interpreted the suggestions of the model and eval-

uated its performance. They often viewed the model as an objective source of

advice, highlighting misunderstandings of ML concepts and a mental model mis-

match. This theme contributed to the findings by exposing common misconceptions

about the model, with participants overestimating its performance and demonstrat-

ing contradictions between their perceptions of the objectivity of the predictions

and the subjective nature of the training data set.

4.4.1.5 User-Model Tensions

This theme concerns how participants experienced tensions in their interactions with

the model, particularly around ambiguity in the data, class imbalances, and con-

tradictions in the confusion tables. Additionally, it describes how the participants
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justified the inaccurate suggestions of the model to their own mistakes during the

coding process and how they trusted the model compared to their own abilities as

researchers. The findings here revealed the participants’ tendencies to blame them-

selves for poor model performance, even when errors stemmed from the limitations

of the model.

4.4.1.6 Interacting with the Model

This theme is focused on specific interactions with the tables when re-labelling sam-

ples and re-training the model, mainly concerning dragging and dropping keywords

or sentences across columns. It contributed by showing that participants appreciated

the ease of interaction but often misunderstood the implications of keyword manip-

ulation, as they believed that the predictions of the model were made on individual

words rather than whole sentences.

4.4.2 Autoethnography Data Collection

The following plan of action was developed before conducting the autoethnography:

1. Revisit the coded semi-structured interview transcripts, the theme-code table,

the results of the thematic analysis and the instructions of the study and the

tool given to participants before the study.

2. Run TACA and explore keywords in the Codes Table.

3. Identify manual labelling mistakes in the Train Keywords Table.

4. Re-label and re-train the classifier until no perceived improvements in the

Confusion Tables.

5. Switch to the Predict Keywords Table and identify classification mistakes.

6. Re-label and re-train the classifier until no perceived improvements in the

Confusion Tables.

7. Switch to the All Keywords Table and explore relationships between key-

words/sentences and themes.
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8. Document usage and experience throughout using field notes, screenshots,

and interaction logs.

The plan was significantly influenced by my previous experience working with

ML for other aspects of my Ph.D. In particular, I knew from previous experience

that the way text is labelled in thematic analysis initially does not work well for

training a ML model. This is because coding units can range from very short phrases

to entire paragraphs, which introduces ambiguity when converting coded data into

structured labels for ML models. For example, I knew that TACA works by break-

ing the text into sentences before assigning a label to each sentence. However, if a

code was assigned to an entire paragraph, it is likely that not every sentence actually

belonged to that label, especially taken out of context. Therefore, I intended to ap-

proach the re-labelling process with a particular strategy that involved first focusing

on correcting the training data set before attempting to re-label the classifications of

the model.

This approach aimed to ensure that the data used to train the model was as accu-

rate as possible, which I believed would lead to better predictions. I was convinced

this was a solid approach as I had used a similar method to improve the perfor-

mance of the same kind of ML classifier used for the study reported in Chapter 5.

In that case, I manually reviewed the mistakes of the model using a spreadsheet,

specifically instances where it incorrectly identified positive or negative cases (false

positives and false negatives), and corrected any errors in the manual labelling. Af-

ter several iterations of correcting the errors and re-training the model, I observed

an improvement in the performance of the model, increasing the average F1 score

(i.e., the F1 score averaged across all classes) from 0.60 to 0.84 on the test set.

Using Confusion Tables for the model inspection phase was also influenced

by previous work on ML, but it was primarily based on the shared experiences of

participants using TACA reported in the interviews. From the thematic analysis

conducted on the semi-structured interviews, a key finding within the “Perception

of the Model” theme was that participants could get meaningful insights about the

state of the model from the frequency-based keywords in these tables. Participants
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spent, on average, around 6:30 on the Confusion Tables, switching to them after

re-training the model most of the times. Compared to the Keywords Tables, where

participants used different strategies to assign feedback to the ML model, almost

everyone focused on the false positive and false negative samples in the Confusion

Tables to measure the performance of the model and identify areas for improvement.

With this in mind, I adjusted the plan to include iteratively re-labelling samples in

the Keywords Tables and evaluating the output of the Confusion Tables, specifically

false positives and false negatives.

Despite the various strategies and approaches to analysing data in TACA due

to personal experience with developing and interacting with ML applications, I still

decided to follow the study and tool instructions as closely as possible. Adherence

to the same guidelines would allow me to generate results that could be directly

compared to those of the participants. For the same reason, the plan did not in-

clude making any changes addressing the shortcomings of TACA highlighted by

the participants, such as reducing loading times. By choosing not to modify or im-

prove the tool, my intention was to more accurately relate to the experiences of the

participants and to provide a more authentic comparison of outcomes.

The study instructions specified a time limit of around 30 minutes for the use

of TACA. However, a significant advantage of using autoethnography compared

to the user study was that I could use the tool as long as necessary. This would

allow me to engage with TACA through multiple iterations of model inspection and

feedback assignment so that I could refine the model as long as it proved beneficial.

The absence of a time constraint also meant that I could endure the relatively long

loading times after each re-classification, which were noted by the participants in

the post-study interviews. By disregarding this one instruction, my intention was

to fully explore the iterative process and gain more meaningful insights into my

experiences using TACA.

I decided to make use of field notes, screenshots and interaction logs through-

out the process to document my experiences in real time. This decision was based

mainly on the work on autobiographical design in HCI by Neustaedter and Sen-
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gers, 2012, which highlights the value of documenting interactions with a sys-

tem throughout genuine usage. A staple of autoethnographies, field notes pro-

vide a structured way to document not only actions taken, but also the emotions,

challenges, and thoughts that arise during the process (Ellis, Tony E. Adams, and

Bochner, 2011). Record keeping and data collection, including screenshots and in-

teraction logs, would allow for a more comprehensive understanding of interaction

by also capturing visual evidence and the quantitative aspects of the experience. To-

gether, these methods were intended to create a rich and detailed narrative to reflect

on the entire process.

The aim of this method was threefold. First, it allowed me to reflect on my

usage of TACA during the different stages of importing the data set, identifying

and re-labelling samples, re-classifying the model, and evaluating the model perfor-

mance. This included collecting personal reflections on how the user interface and

feedback mechanisms influenced my decision-making, labelling strategies and gen-

eral workflow. Second, the method allowed for a deeper exploration of my personal

perceptions, thoughts, and emotions during the interaction with the ML model, in

the typical fashion of autoethnographies. Finally, a key objective of this method was

to compare the results I obtained from extending the thematic analysis of the semi-

structured interviews with the outcomes of the initial analysis conducted without

the use of TACA.

4.5 Findings
In this section, I describe my experiences using TACA with the semi-structured

post-study interview transcripts that were manually coded using inductive thematic

analysis.

4.5.1 System Usage

My interaction with TACA took place over a span of 2 days as I frequently took

breaks to annotate my experiences. During this time, I re-trained the model 7 times,

moving 6 keywords and 51 sentences in the Train Keywords table, 4 keywords and

27 sentences in the Predict Keywords table, and 1 keyword and 11 sentences in the
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All Keywords table. When inspecting the Keywords tables, I clicked on keywords

to reveal the tooltip 97 times in the Train Keywords table, 75 times in the Predict

Keywords table, and 33 times in the All Keywords table. Due to significant class

imbalance, the initial average weighted F1 score across classes was low (0.25), but

increased to 0.37 over the course of re-training.

4.5.2 Interacting with TACA

Designed to expose non-experts in ML to IML, TACA was developed over several

months through an iterative process in which I regularly discussed features with

my supervisors and quickly tested them to identify and resolve bugs or potentially

challenges experiences that participants would encounter during the user study. En-

suring functionality was my priority during this time, which meant that there was

little room to fully explore how the features of the tool could be used to meaning-

fully engage with the data. At the time, I also did not have a suitable data set from

my own interviews and research that I could use to thoroughly test the functional-

ity of TACA. With this awareness, I anticipated moments of frustration in which

I would wish I had approached certain features or design choices differently as a

designer and developer.

4.5.2.1 Class Imbalance

Following the plan drafted and described above, among my first interactions with

TACA involved the exploration of the Codes Table (see Figure 4.1). Compared to

the theme-code table as a spreadsheet I had revisited before running the tool, this

table offered additional insights into the thematic analysis I had conducted manu-

ally, namely the number of sentences belonging to each code and theme (shown in

parentheses) and the individual sentences belonging to each code.

My experience implementing, training and testing ML models in my work has

taught me the importance of class balance in model performance, a key concept I

also learned while studying ML theory. This particular knowledge influenced the at-

tention I paid to the number of samples across different classes, in this case themes,

as I understood that imbalances could negatively impact the accuracy and reliabil-
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Figure 4.1: Screenshot of the Codes Table

ity of the suggestions of the model. Although TACA does handle class imbalance

by implementing an oversampling algorithm for multi-label classification (Charte

et al., 2015), the Codes Table revealed that the classes were highly imbalanced,

leaving me somewhat concerned about the performance of the model. An initial

strategy that I quickly discarded but that would stay in the back of my mind during

the rest of the use of TACA was to favour re-labelling towards the theme “Interact-

ing with the Model”, the theme with the lowest number of sentences, in an attempt

to manually balance the classes. This consideration marked my first exposure to

the tension between improving model performance and improving the analysis, a

recurring theme in this autoethnography.

4.5.2.2 Data Set Structure

Clicking on individual terms in the Codes tables displays a tooltip containing the

sentences that were manually labelled with that particular code. The sentences re-

vealed in the tooltip confirmed my impression that generating a training data set

for an ML model directly from qualitative data analysis is challenging and requires

manual refinement to address the structural differences of the two types of data. In

particular, I noticed that a considerable number of sentences, when taken out of con-

text, did not actually belong to the code assigned. See Figure 4.2 for an example.
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Figure 4.2: Example of a code including a sentence taken out of context: “And got the
washing machine over there”.

These sentences are significant because the model is trained on the direct associa-

tion between individual sentences and their assigned class label, without consider-

ing the broader context. For example, in the case of “And got the washing machine

over there”, the model might incorrectly learn that “washing machine” is linked to

the class “Perception of the Model”, leading to potential misclassifications. This

sentence is part of a whole paragraph that was manually labelled as “Perception of

the Model”. Here, a participant was reviewing sentences labelled by the model and

(coincidentally) how they and the model “spoke different languages” when labelling

text: contextually and verbosely compared to one sentence per code.

4.5.2.3 Re-labelling Training Samples

Part of the re-labelling strategy I chose to follow involved interacting with the Train

Keywords Table first to correct the labelling mistakes that were either made during

the coding phase of the thematic analysis or that appeared after converting a data set

used for thematic analysis to one used to train an ML model. Shortly after starting to

compare the meaning of each keyword with its respective theme to identify the ones

that were out of place (the same way as participants in the user studies), I realised

that there were simply too many keywords to go through (see Figure 4.3). As a
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Figure 4.3: Screenshot of the Train Keywords Table

result, I changed my approach by identifying only the one or two keywords with

the strongest correlation to the respective theme in each column, and see whether

those appeared in different columns too. These included, for example, the keywords

“helpful” and “keywords” in “Design Choices”, “coded” in “Data Review”, “tool”

in “Using TACA/ML in QDA”, “wrong” in “User-Model Tensions”, and “drag” in

“Interacting with the Model”.

My interactions with the keywords evolved over time. Initially, I found myself

sharing the same concern as the participants whenever I considered dragging and

dropping keywords from one theme to another. Namely, that using keywords as

handles for groups of sentences would result in re-labelling some sentences that I

would not want to re-label. While interacting with the drag-and-drop functionality,

I quickly realised that not all sentences including the most frequently appearing

keywords should have been moved. Therefore, my earlier interactions involved

moving individual sentences, mainly from the keywords with a strong association

to a theme that did not appear under that theme. Realising that this process was not

very efficient, I tried to identify keywords with a lower frequency number that were

more likely to include only sentences that should have been moved, for example
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Figure 4.4: Screenshot of the Train Keywords Table after the initial re-labelling process.

“bin” (12 sentences) and “moved” (13 sentences) from “Perception of the Model” to

“Interacting with the Model”, and “coded” (32 sentences) and “look” (24 sentences)

from “Design Choices” to “Data Review”.

One aspect that emerged from this interaction with the Train Keywords Ta-

ble is the concept of trade-off between the effort required (in terms of time and

manual labour of re-labelling) and the quality of the re-labelling. In other words,

I considered that it might be more efficient to drag and drop keywords containing

a large number of sentences, even if not all of the sentences should technically be

re-labelled, as the net effect on steering the model could still be positive. However,

since time was not necessarily an issue, and in fact autoethnography allowed for

full use of TACA, I decided to commit to a more fine-grained re-labelling approach.

See Figure 4.4 for the Train Keywords Table after the changes made to address the

mistakes due to manual labelling and the sentence extraction process.

4.5.2.4 Using Confusion Tables to Drive Model Feedback

Confusion Tables were designed to drive the model inspection phase in the IML

cycle. Inspired by confusion matrices, the intention was to enable users to see where

the model was performing well and where it was not, potentially suggesting which
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samples to re-label before re-training the model again. Here, my habits of working

with performance metrics were difficult to break, and I found myself adding the

number of true positive and true negative sentences, comparing it to the number of

false positives and false negatives. At this point, I was convinced that improving the

performance of the model was not the priority as the researcher and participant of

the autoethnography. However, gauging which theme required the most re-labelling

was still something I thought to be useful in terms of efficiency.

At a first glance, my initial concerns about class imbalance were somewhat

confirmed. The theme “Interacting with the Model”, which contained the lowest

number of sentences in the training data set, was heavily skewed towards negatives

in the Confusion Table (see Figure 4.5). Regardless, I still approached the tables

with the goal of reviewing mainly the false positive and false negative classifica-

tions. This strategy was informed by previous experience from other work in my

Ph.D., but also by the participants in the user study, who demonstrated the most

critical and analytical thinking when reviewing these specific columns in the table.

Perhaps a clear difference in my approach was the additional step of identifying

the sentences where the classification of the model looked more convincing than

my own labelling, and consequently re-labelling similar sentences in the Keywords

Tables.

An example that illustrates the process of identifying sentences appearing in

the Keywords Tables that were similar to the ones appearing in the Confusion Table

involves the keyword “move”, or “moved”. Together, these were the keywords that

appeared the most frequently under false negatives for the theme “Interacting with

the Model”. Looking for the words in the Keywords Tables proved to be tedious, as

there were definitely too many words for me to quickly find them. Here, I wished

I had implemented a way to search individual terms, something that I recalled one

participant mentioning during the interviews. Dragging and dropping “move” in the

Train Keywords Table from “Using TACA/ML in QDA” (7 sentences) to “Interact-

ing with the Model”, I truly felt like I was engaging with TACA according to the

iterative cycle discussed in the literature on IML by giving feedback to the model



4.5. Findings 93

Figure 4.5: Screenshot of the Confusion Table for the theme “Interacting with the Model”.

according to the model inspection phase.

A limitation of this strategy that I considered and that refrained me from mak-

ing more than a few movements according to the false negative keywords is that

the Keywords Tables do not include sentences that are unlabelled. The false neg-

ative samples in the Confusion Table could also have been classifications in which

the model did not assign any label. However, the Keywords Tables only include

sentences that have been assigned at least one label. Therefore, there were simply

fewer words or sentences appearing in the Keywords Tables that could be similar

to the ones misclassified as false negatives. After my iterative interactions with

the Confusion and Keywords Tables, I wished I had implemented a feature that

would allow users to accept or decline changes directly from the Confusion Table

to avoid switching tabs, finding the right keywords, and also address the limitation

mentioned above.

4.5.3 Perception of the Machine Learning Model

4.5.3.1 Initial Considerations on Model Performance

I experienced conflicting views about the ML model used in TACA when I began

the autoethnography. My Ph.D. experience taught me that tuning hyperparameters
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is crucial for achieving good performance in ML. Typically, hyperparameters set to

general-purpose values may result in subpar performance for specific data sets or

tasks. However, I was aware of a key decision made during TACA’s development,

namely to avoid optimisation and use default values instead. This choice was made

for several reasons. Hyperparameter optimisation would need to occur for every

user, as the process is highly dependent on the data set used. This computationally

intensive process requires training and testing the model multiple times on different

data splits, significantly increasing initial loading times. Additionally, TACA is

an IML tool designed to investigate the process of re-labelling and re-training by

allowing users to iteratively improve the model through interaction. In this context,

some initial model inaccuracy was actually beneficial.

The assumption made when deciding to avoid optimising the parameters of the

model was therefore that users would be able to improve its performance through

the process of re-labelling and re-training. However, this was not actually con-

firmed during the user study, as the participants did not re-train the model enough

times to determine whether the performance was genuinely improving. Instead,

my hopes for model performance were based on the study on interpretability tech-

niques reported in Chapter 5, in which I significantly improved the same model by

just correcting the ground truth by re-labelling samples in the training data set.

Regardless, it was clear from the interviews in the user study that the partic-

ipants demonstrated thoughtful reflection on their coding and gained valuable in-

sights from the data from suggestions that they considered to be “wrong”. For the

purpose of exploring a qualitative data set, perhaps achieving good model perfor-

mance was not as important as I had originally thought.

4.5.3.2 Reviewing Suggestions

The very first consideration I made when reviewing the suggestions generated by

the model was about my own selective bias involved in the process. In the absence

of performance metrics, the only way to evaluate the model is through individual

classifications. As an invested developer, I found myself giving more weight to the

samples that I thought were correctly classified while downplaying or rationalising
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Figure 4.6: Screenshot of the Predict Keywords Table after the initial re-labelling and re-
training process.

the mistakes. This was possible due to the absence of a clear ground truth, allow-

ing me to navigate the ambiguity of the sentences and interpret the classifications

in a way that fit my view of an accurate ML model. However, as the researcher in

the autoethnography, I needed to resist the urge to justify the classifications simply

because the model was the product of my work. Otherwise, I would not have in-

teracted with the system as much as I should have to gain deeper insights from the

data.

After several iterations of reviewing the false negative and false positive sam-

ples in the Confusion Table and re-labelling the related samples in the Train Key-

words Table, the Predict Keywords Table looked surprisingly good despite the se-

lection bias I had recognised (see Figure 4.6). In fact, I believed the most frequent

keywords appearing at the top of each column had a clear connection with each

theme, at least according to my manual coding process. My perception of the ML

model improved significantly at this point, as I began to give more value to the

suggestions.

Across every theme, I noticed that the coding suggestions of the model con-

tained sentences that I had missed in the manual coding process. At this point,
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I began to consider the model as a true extension of my own analytical process.

Compared to the participants in the user study, who found the model to be an ob-

jective source of advice, I recognised the suggestions more as the product of the

collaboration between my own interpretations and the ability of the model which

shared my perspective. In fairness, this was probably because I did not notice many

examples of suggestions that contradicted my own interpretation. Still, my trust in

the model evolved over time as I perceived that it was genuinely improving.

4.5.3.3 Inner Workings of the Model

When reviewing the suggestions of the model, I realised that I was often trying to

understand the reason behind the classification to improve my understanding of the

current state of the model and inform re-labelling. The absence of interpretability

techniques, such as word importance heat maps, meant that I was relying solely on

speculation. However, my knowledge about how the model worked was enough to

at least give me hints. For example, I knew that each word carried more weight to

the classification in a short sentence compared to a long sentence. This is because

the sentence is converted into an embedding vector, which is the average of all the

embedding vectors for each word. With this in mind, I paid closer attention to short

sentences containing important words, both when evaluating the performance of the

model and when choosing which sentences to re-label.

Another aspect that I considered was the probabilistic nature of the model. To

each classification, there is an associated confidence score that is not displayed in

TACA. I wished I had access to the scores, as I would have directed my efforts

toward re-labelling samples which the model classified confidently, because those

are the instances that, when re-labelled, would have a greater effect on model be-

haviour. Compared to word importance and sentence length, I believed there was

nothing I could use to compensate for the lack of metrics and cues. The design

decisions originally made to facilitate the interaction for non-experts in ML made

it sometimes frustrating to work with TACA as my workflow felt somewhat limited

by the tool.
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4.5.4 Emerging Insights and Analytical Reflections

4.5.4.1 Additional Insights

The initial process of reviewing the Train keywords with the strongest correlation

to each of the themes already provided significant insights into the data that I had

not noticed during the manual thematic analysis. For example, I believed “key-

words” was one of the keywords most strongly associated with “Design Choices”

and “Data Review” and, in fact, it appeared frequently in both columns. Keywords

were arguably the most important design choice when developing TACA, as they

were the primary means for the user to influence the behaviour of the model, and

were also a means to facilitate data inspection by aggregating large amounts of data.

However, “keywords” and “words” also very frequently appeared in “Perception of

the Model”. When reviewing the list of sentences, it was clear that participants also

experienced the model through the keywords, for example:

“The Predict keywords are based on your style of categorising the codes

and generating the themes; it follows your patterns and tries to do your

work as best it can.”

Although I did not find the fact that participants shaped their perception of the

tool primarily through keywords particularly surprising, it was still something that

I had initially missed. In fact, the theme-code table did not include codes related

to keywords under the theme “Perception of the Model” except for one related to

the confusion between pointers and semantics. This is important because it would

have been valuable to explore how keywords, as a design element, impacted the per-

ception of the model, especially compared to more traditional evaluation measures,

such as performance metrics.

Another example of a different insight that emerged from just reviewing the

data in the Train Keywords table concerned the distinction that participants missed

between the tool and the model. In particular, I noticed that the word “tool” ap-

peared very frequently in the theme “Perception of the Model”. After inspecting

the sentences, it was clear that many participants referred to the ML model as just

“the tool”, for example:
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“and there was a direct quote that they had inside of the review, and

then the tool chose something next to it that looked similar.”

Looking back at the interview transcript, this participant never once used the

term “model”, even when answering questions that specifically mentioned it. In the

original Train Keywords table, “model” only appears 20 times in “Perception of the

Model”, 13 times in “User-Model Tensions”, 13 times in “Data Review”, 12 times

in “Using TACA/ML in QDA”, 11 times in “Design Choices”.

Coding suggestions from the model also provided several unique insights into

the data. Besides revealing the sentences that I had simply missed during the cod-

ing process, the suggestions also included interesting patterns. For example, the

keyword “true” appeared frequently in the Predict Keywords Table under “Data

Review”. The sentences that included this term were all about “true positives”.

Conversely, “false” appeared as a frequent keyword under “User-Model Tensions”.

The manual data analysis already revealed that false positive and false negative clas-

sifications created some tensions with the model. However, it had missed that true

positives played a different but equally significant role in reviewing manual coding.

4.5.4.2 Structural Changes to the Analysis

Some participants in the user study reported that, had they used TACA at an ear-

lier stage in the analysis, their results would have been different. For example,

they might have changed or added themes based on the predictions of the model in

the Confusion Tables under false positive and false negative. With this in mind, I

approached the suggestions of the model ready to question the results of my own

analysis.

Although I initially believed that my analysis did not require a complete

thematic restructuring after interacting with TACA, further reflection led me to

consider alternative interpretations and some necessary adjustments. These were

mainly driven by the fact that the same keywords appeared in multiple themes. For

example, in the All Keywords Table, “keywords” appeared very frequently in every

theme. In almost every case, I thought the predictions of the model made sense, and

that the term “keywords” was simply used in different contexts. This made me con-
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sider the possibility of having “keywords” as a separate dedicated theme. However,

doing so would also require re-evaluating other themes where “keywords” previ-

ously played an important role, such as “Design Choices”, as it would disrupt their

overall balance and coherence. In particular, isolating keywords into a dedicated

theme might obscure the interplay between user interaction and model perception.

Another keyword that appeared very frequently in every theme was the term

“see”. Initially, I had not given this term much thought, as I considered it simply

a stop word that I had forgotten to filter during the setup of TACA. However, upon

closer inspection of the sentences that contained the word, it was clear that “see”

was used either as a synonym for “check”, or as a reference to the visual interface of

TACA. In “Data Review”, these sentences were understandably about checking or

verifying the data. Meanwhile, in “Interacting with the Model”, they were mostly

referring to specific elements of the interface of the tool. The distinction between

inspection-based interactions and visual elements was generally very subtle:

“When I click the keyword and see the sentences, I think it’s probably

more linking to the overall restaurant environment.”

I soon realised that the weak distinction was not just about the use of the word

“see”, but extended to the two themes “Data Review” and “Interacting with the

Model”. Put simply, participants often reviewed the data as a natural part of their

interactions with the model.

Initially, “Interacting with the Model” was meant to focus specifically on the

drag-and-drop re-labelling within the UI. However, during the analysis, it expanded

to include other aspects beyond the interface, such as the code “re-classification

improvement” (see Appendix B.1). After my own use of TACA, I realised that

these two aspects should have been separated. Similarly, the theme “Data Review”

could have been split between reviewing the participant’s own manually labelled

data and reviewing the suggestions of the model. These distinctions would have

provided clearer insight into the in reviewing different types of data and the specific

interactive qualities of the tool.
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4.5.4.3 Reflexivity

Like the participants in the user study, engaging with the predictions of the model

allowed me to critically reflect on my own presence during the qualitative data anal-

ysis process. One key difference, however, was that I did not consider false positive

and false negative classifications as contrasting suggestions. Participants consid-

ered these to belong to an equally valid, if not better, interpretation of the data, and

recognised their own role in the analysis when justifying their own labelling against

them. In my case, I did not give as much weight to the classifications that contra-

dicted my labelling and, instead, used them to drive model feedback by showing me

on which samples the re-labelling should take place. Therefore, my experience of

reflexivity was not specifically driven by tensions with the model, but by how the

suggestions reinforced my existing decisions while also prompting me to consider

alternative interpretations.

The structural changes to the analysis that I considered and reported above

were mainly the product of interacting with the All Keywords Table. Necessarily,

I had to compare these changes to my own manual analysis to evaluate whether

the insights I gained warranted hypothetical adjustments to my theme and coding

structure. For example, I came to the conclusion that adding a dedicated theme for

keywords would contrast my analytical perspective, since it would lead to changes

in the other themes that would place more emphasis on specific features of TACA. I

recognised that the user study was run to understand how non-experts interact with

IML, and that the aim of my role in the analysis was to uncover findings that could

be generalised beyond TACA.

The awareness of my position also influenced my assessment of the second

structural change. In this case, I realised that splitting “Interacting with the Model”

into separate themes, one focused on the specific UI interactions and another on

broader interactions with the suggestions, could have been beneficial. This realisa-

tion was partly driven by my recognition of bias as the developer of TACA. Look-

ing at the data, I noticed that I had been viewing interaction with the tool primarily

through the features I had implemented and consequently grouped all other interac-
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tions under this single theme.

4.6 Discussion

4.6.1 Reflecting on the Different Roles in the Autoethnography

Autoethnography is so far an under-explored approach within the context of human-

AI interaction and IML. The following section discusses the tensions of adopting

the roles of a developer, a researcher, and a participant in using TACA.

4.6.1.1 Developer-Researcher Tensions

As the developer of TACA, I was directly invested in the outcome of this au-

toethnography. To some extent, my expectations of the tool were shaped by the

user study, which exposed me to the participants’ feedback regarding the benefits

and limitations of TACA in supporting qualitative data analysis. Still, part of me

also recognised that the participants were non-experts in ML, and that my pro-

fessional background and in-depth knowledge of the inner workings of tool could

uncover findings that would cast TACA in a more favourable light. Of course, an

external researcher would not have approached the autoethnography with the same

expectations and inherent biases.

During the autoethnography, there were moments in which the two roles were

somewhat conflicting. For example, I realised that I was giving more weight to sam-

ples that I thought were correctly classified compared to those that were misclassi-

fied. I made a conscious effort to analyse both correct and incorrect classifications

equally, regardless of my initial judgments, to engage with the model in more depth.

This was possible by reminding myself that the performance of the model was not

crucial to the autoethnography, and that the focus of this work was instead on my

interactions with TACA.

Previous work has identified the tensions between the role of developer and

researcher in autobiographical design, which draws on extensive, genuine usage by

those creating or building the system. In an attempt to address “the complexities

of using this method with more precision and finesse”, Riordan, 2014 and Des-

jardins and Ball, 2018 recommend sincerity, defined as “concerned with the degree



4.6. Discussion 102

to which a study is marked by honesty and transparency”. To my best ability, I

have reported my perceived biases and the limitations of the tool, as well as de-

scribing my positionality as a researcher to contextualise the findings. Situating the

findings this way required significant introspective effort that I hope will inspire

future researchers when considering their own positionality while engaging in au-

tobiographical design and autoethnographic studies at the intersection of HCI and

AI and beyond.

4.6.1.2 Developer-Participant Tensions

The participants in the user study were non-experts in ML. In comparison, not only

did I have experience in ML, but I also knew exactly how TACA worked. Through-

out the autoethnography, I employed strategies to re-label samples and inspect the

model that were uniquely based on my experience and knowledge. For example, I

knew that the sentence embeddings were generated by taking the average embed-

ding of each word, and therefore preferred re-labelling shorter sentences that con-

tained important words. These insights were simply not possible to gain from users

exposed to the tool through the interface only, which did not reveal the underlying

processes or provide explanations for how the model made decisions.

The effects of the role of the developer during the autoethnography were also

felt in other interactions. Much of the effort in developing ML systems is made in

achieving good model performance, and my own experience reflected that. I was

also expecting that, initially, the performance of the model was not going to be high

for a variety of reasons related to the training data set generation and hyperparame-

ters selection. Together, these factors contributed to the tension between wanting to

“fix” the system and remaining immersed in the analysis.

The perspective of the developer when interacting with TACA introduced an

additional component compared to the previous results of the user study with non-

expert participants. This perspective revealed different but arguably equally valid

findings. In fact, although it is true that one of the advantages of IML is that model

refinement can be driven by non-experts in ML, these applications are often used

by experts and developers too due to the speed of the iterations and immediate
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feedback (Amershi, Cakmak, et al., 2014). Therefore, reporting on how a user with

experience in ML engages with TACA contributes to a more holistic understanding

of IML by complementing the findings of the user study.

4.6.1.3 Researcher-Participant Tensions

The tensions between the roles of researcher and participant are widely recognised

as part of self-study research methods. The priority of the researcher is to objec-

tively analyse the behaviour of the participants, but as a participant myself, my

subjective experience and involvement complicated that analysis. As a result, I

have attempted to address the three measures of autoethnography according to the

literature (Ellis, Tony E. Adams, and Bochner, 2011): reliability, validity and gen-

eralisability.

To answer the question of reliability, I have included factual evidence, where

relevant, with screenshots of the different views of TACA as well as direct quotes

from the data set. The decision to omit the timestamped interaction logs was made

after considering that the use of the tool spanned several days, with many occasions

in which I would stop interacting with the tool to take notes.

Validity refers to the extent to which the story enables the reader to enter the

subjective world of the teller (Lucero, 2018). In an attempt to evoke in the readers

a feeling of a lifelike, believable, and possible experience, I have described my

thought processes, emotions, and biases, and how these were shaped by my personal

background (Ellis, Tony E. Adams, and Bochner, 2011). Hopefully, even if the

reader did not necessarily share my perspectives, they were still be able to relate to

my experience.

In the absence of a participant pool, the generalisability of autoethnography

moves from respondents to readers and is determined by whether the autoethnogra-

pher is able to illuminate unfamiliar processes (Ellis, Tony E. Adams, and Bochner,

2011). During this study, I was aware that specific elements of the inner workings

of TACA would be unfamiliar to the reader, and paid close attention to describing

them in detail. Additionally, as IML is currently a niche approach to ML com-

pared to traditional systems, I also tried to describe the thought processes behind
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key decisions made in the iterative cycle.

4.6.2 TACA Effectively Supports the Refinement of Qualitative

Data Analysis

One of the objectives of this work was to directly compare the results of a qualita-

tive data analysis performed manually on the user study interviews with the results

obtained when using TACA. In line with my plan of action, I engaged with the tool

through multiple iterations of model inspection and feedback assignment as long as

it proved beneficial in terms of model performance and insights gained.

4.6.2.1 Findings Extending Previous Results

The integration of ML in the analysis revealed that I had missed numerous sentences

during the coding process. In some cases, these oversights were inconsequential,

as they would not have drastically changed the results of the analysis. In others, I

became aware of patterns that the model had learned that I had not. For example,

placing sentences including the keyword “false” in “User-Model Tensions” was ex-

pected, but the keyword “true” in “Data Review” revealed that participants used the

true positive classifications to analyse their own coding. This finding would have

been interesting to report, as it would have introduced an additional use case for the

Confusion Tables that was unexpected during the design process, since these were

implemented to drive model inspection.

More significant extensions to the results of the analysis were driven by re-

viewing the frequency of keywords across themes in the training data set, as well

as the suggested sentences. For example, the conflation of identities between the

model and the tool was missed without these frequency-based tables, which high-

light patterns that are not always immediately apparent after the coding process.

This aspect extends the original analysis by uncovering subtle interactions between

users and TACA, suggesting that non-experts may fail to distinguish between the

interface and the underlying algorithm. Without a clear understanding of the sep-

arate role of the algorithm, participants were more likely to trust the output of the

model uncritically. Because the participants experienced the model and the tool as
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a single entity, their experiences with the interface of the tool likely influenced their

perception of the ML model. This finding, as well as explaining the perception of

an impartial and objective model, has important implications for how to design and

communicate ML-driven system to users, especially in an attempt to foster trans-

parency and trust in non-experts.

4.6.2.2 Findings Contradicting Previous Results

Reviewing the All Keywords Tables, which included both the training and predicted

data sets, revealed possible changes to the structure of the themes and codes that I

had originally drafted. In particular, the fact that certain keywords, which were not

stop words, appeared in every theme made me realise that perhaps the categories

were not so distinct after all. Thematic analysis is not a rigid process, and themes

can be flexible to accommodate the complexity of the data without forcing prede-

fined categories (Braun and Clarke, 2006). However, I believe that restructuring the

themes into more fine-grained categories would have led to a more nuanced analysis

of the data.

An important structural change to the analysis that I believed would have been

beneficial is the one related to the distinction between interacting with the model

and interacting with the UI. When reporting the results of the user study, the two

types were combined, but after reviewing the sentences in TACA, it was clear that

separating these interactions would have allowed for a more precise analysis of how

participants navigated the interface used in re-labelling versus how interpreted the

re-classifications of the model. In fact, what emerged through my use of TACA

is that participants reflected on their interaction with the drag-and-drop feature, re-

vealing misconceptions around using keywords as handles for sentences versus key-

words as features for the classification. They also described their interactions with

the model overall, such as their re-labelling strategies and the perceived improve-

ments in the outcome. These two interactions were related, but arguably did not

belong to the same theme, as one required more mechanical actions, while the other

required deeper cognitive engagement with the data. Distinguishing between these

types would have highlighted the different processes at play and provided clearer
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implications of the findings. For example, by separating mechanical and cogni-

tive tasks, system designers can create more tailored interfaces to help users better

understand the distinct roles of the interface and the algorithm.

Another unexpected discovery involved the term “see”. Initially dismissed as

a stop word, it emerged as a significant term upon closer inspection of its usage.

Participants used this term in two distinct ways: as a synonym for “check” dur-

ing data verification in the “Data Review” theme, and as a reference to interacting

with the visual interface of TACA in “Interacting with the Model”. This distinction

prompted me to rethink how these themes related to each other. The subtle overlap

between reviewing data and interacting with the model was not just about terminol-

ogy but about the processes participants engaged in while navigating the interface.

In particular, participants’ engagement with the model was tightly coupled with

reviewing data, blurring the lines between these two themes.

This reflection pushed me to reconsider whether my initial structure was ap-

propriate to capture the nuanced user behaviours revealed by TACA. Although I

initially resisted overhauling the thematic structure, the iterative engagements with

the tool allowed me to potentially refine the analysis by making distinctions between

themes that would capture more fine-grained interpretations of the participants’ in-

teractions. This divergence from my initial findings highlights the value of the

iterative process in qualitative analysis, where revisiting data with new perspectives

can reveal complexities and contradictions that were previously missed.

4.6.2.3 Encouraging Reflexivity in the Analytical Process

In addition to refining the structure of the analysis, TACA also encouraged reflexiv-

ity, one of the pillars of qualitative data analysis (Fontana, 2004; Jootun, McGhee,

and Marland, 2009; Braun and Clarke, 2019; Holmes, 2020). Like the participants

in the user study, I was frequently reminded of my role in the analysis. However, this

happened for participants whenever they were justifying their own labelling when

confronted with the contrasting classifications of the model in the false positive and

false negative samples. In my case, I noticed the effects of my role when faced with

potential changes to the themes after reviewing the entirety of the data. This finding
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is aligned with the fact that users with more experience in ML are generally less

trusting of the output of the model and, therefore, when the output is contrasting, it

is less likely to be viewed as a valid alternative interpretation of the data (Q. Yang,

Suh, et al., 2018). Designers of ML-driven systems should carefully take into con-

sideration the users’ expertise and previous knowledge in ML to design appropriate

interactions and feedback mechanisms.

Ultimately, TACA helped me identify parts of the text that I had originally

missed, evaluate areas for potential restructuring of the analysis, and encouraged

me to reflect on my own positionality as the researcher. These insights enhanced

both the breadth and depth of the qualitative analysis, demonstrating how TACA

can effectively support qualitative data analysis and, more broadly, how ML can be

integrated into analytical processes.

4.6.3 Implications of Design Choices on Interactive Machine

Learning

The interaction with TACA revealed several aspects of the design choices made dur-

ing development that have relevant implications on the interaction with AI-driven

systems. Some of the considerations made during the autoethnography were shared

by the participants in the user study, while others are in contrast to the behaviour of

the participants due to the difference in expertise in ML concepts.

4.6.3.1 Batch Re-labelling and its Impact on Model Refinement

Batch re-labelling of data samples was a feature of TACA that was originally imple-

mented to address an important limitation of IML: not only is labelling data tedious

and sometimes not considered worthwhile by the user, but it requires investing sig-

nificant effort before noticeable change in the model (Wong et al., 2011; Groce et

al., 2014; Ribeiro, Singh, and Guestrin, 2016). The implementation of keywords

was meant to exploit the most frequent terms as handles for groups of sentences,

enabling the user to re-label multiple data points, or sentences, simultaneously.

The participants in the user study approached the keywords with mixed strate-

gies: some were cautious, carefully considering the impact of re-labelling multiple
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sentences at once, while others were more willing to experiment and quickly re-

label large batches. My own experience with keywords fell into the first group,

at least initially. The absence of a time limit in the autoethnography meant that I

could adopt a more fine-grained approach to re-labelling, since the effort taken to

re-label individual sentences was personally not an issue. However, I did begin to

consider the trade-off between effort required and the quality of the re-labelling as

the number of data points re-labelled increased.

For users who are constrained by time or resources, batch re-labelling might

offer a more practical solution, even at the cost of potentially introducing errors

in the data set. This is because re-labelling multiple data points at once can en-

able users to make faster progress and see immediate changes in the performance

of the model. Conversely, users who can afford a more meticulous approach can

improve the performance of the model by carefully refining individual data points

and potentially achieving greater performance at the cost of more manual effort.

Interfaces for feedback assignment in IML require the most careful design in

terms of both elements and interaction methods (Dudley and Kristensson, 2018).

In an attempt to address the issues of batch re-labelling, visualising anticipated

changes could introduce transparency in the system, which greatly affects the qual-

ity of the response elicited from users (Amershi, Cakmak, et al., 2014). However,

in general, the design of IML systems should account for different user needs and

offer flexibility for those who prioritise efficiency and accuracy differently based on

their constraints and goals.

4.6.3.2 The Role of Transparency in Interactive Machine Learning

An aspect of my experience with TACA that differed from the participants in the

user study is my preference for greater diagnostic transparency within the system.

The results of the user study supported the need for interpretability techniques de-

signed for model diagnostics to help users understand why the ML model presented

a conflicting coding suggestion and avoid the perception of an objective source.

However, no participant explicitly stated the need for deeper insights into the in-

ternal workings of the model or requested more detailed diagnostic information
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beyond understanding the immediate outputs. In contrast, I became aware that

transparency would facilitate feedback assignment by exposing the samples that,

when re-labelled, would steer the ML model more efficiently toward more accurate

predictions.

Interpretability is usually discussed in the literature in terms of how it posi-

tively impacts trust, reliability, robustness, causality, and usability of ML models

(Doshi-Velez and B. Kim, 2017), particularly in high-stakes areas such as health-

care, finance, and criminal justice (Samek, Wiegand, and Müller, 2017). Examples

of implementations in existing tools include: model-specific, gradient-based tech-

niques for Convolutional Neural Networks used for clinical diagnosis in medical

image analysis, inherently interpretable models that support rule extraction for ex-

planations and dialogues in conversational systems to predict legal outcomes in the

justice system, and rule extraction methods used on interpretable models such as de-

cision trees in financial services (Ding, Abdel-Basset, and Hawash, 2022; Srinivasu

et al., 2022).

Compared to these applications, where model transparency is used to extract

diagnoses and explanations from the model, interpretability could take on an al-

ternative role in a tool like TACA. TACA encourages users to reflect on the data

(both training and predicted) and build appropriate strategies to steer the model in a

particular direction. In this context, interpretability can optimise the user’s contribu-

tion to the iterative learning process of the model. Recent work by Teso et al., 2023

confirms that techniques can significantly enhance the user’s ability to correct the

model by providing explanations that highlight misclassifications and areas of im-

provement. They also note key challenges, such as ensuring explanations are both

understandable and actionable, especially for non-experts, without overwhelming

the users with too much information, which was the primary concern when devel-

oping TACA.

In general, transparency can also greatly reduce the distance between the expe-

riences of non-expert participants reported in the user study in Chapter 3 and those

detailed in this autoethnography. A notable difference was that the participants
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were not aware of misclassifications due to the model making mistakes. In this

case, word importance heat maps could visually highlight which words contribute

most to the classifications of the model, making it easier for non-experts to iden-

tify when the decisions of the model are based on misleading terms rather than the

broader meaning of the sentence. Alternatively, the presence of classification scores

alongside model predictions could offer another form of transparency by indicating

the confidence of the model in each of its decisions.

In a user study evaluating saliency maps in image classification, Alqaraawi

et al., 2020 found no statistical significance in the presence of classification scores

shown with classified samples when predicting model behaviour. However, a study

by Verame, Costanza, and Ramchurn, 2016 demonstrated that the presence of scores

can encourage the usage of autonomous systems and provide better guidance to

users when interacting with these systems. This finding is aligned with the IML

cycle, which relies on user feedback to iteratively improve model performance

and foster a deeper understanding of model behaviour. By exposing classification

scores, the system can enable users to identify which samples to prioritise during the

re-labelling process. However, similarly to explanations, system designers should

carefully calibrate the level of transparency and detail to optimise user interactions

without overwhelming them, particularly non-experts who may struggle to process

too much information at once.

4.6.4 Machine Learning and Human Interpretation

4.6.4.1 Balancing Model Performance and Data Reflection

Throughout my experience using TACA, there were numerous moments where I en-

countered an unexpected conflict between improving the performance of the model

and reflecting on the qualitative data. A key assumption made during the design

stage of the tool was that, by engaging in the iterative cycle of IML by re-labelling

misclassifications and re-training the model, the user would eventually obtain better

suggestions from the model and therefore gain more valuable insights from the data.

The participants in the user study did not engage in the cycle sufficiently to

assess the validity of the assumption. Conversely, my sustained use of TACA in-
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volved several iterations and, in spite of initial biases on model performance, I was

convinced by the end of the study that the model had improved, and in fact the

average F1 score did actually increase by 0.12. As a result, the suggestions of the

model included sentences that I had originally missed when coding the interview

transcript. These were definitely valuable in terms of extending the analysis, as I

could have used the additional sentences to reinforce additional points or themes

that I had originally uncovered. However, perhaps more interesting insights came

from reviewing the data I had manually coded. Here, the insights were more about

the structural changes to the thematic analysis, suggesting ways I could re-arrange

codes and themes to analyse the data from different perspectives.

4.6.4.2 Ground Truth and Human Expertise

My own behaviour around conflicting classifications of ambiguous data was oppo-

site to the one reported by the non-expert participants in the user study. Specifically,

as a user with experience in ML and knowledge about the inner workings of the

model, I found myself giving less importance to the false positive and false nega-

tive classifications in the Confusion Tables compared to the participants in the user

study. The difference in how I valued the suggestions of the model compared to the

insights gained from reviewing manually coded data could be due to several factors.

These classifications were important in the user study, as they presented the partic-

ipants with a view that was conflicting to their own and were therefore perceived as

new perspectives that had not been previously considered. However, I had first-hand

experience of the failings of the model during the development and testing phase, so

I automatically tended to attribute these classifications to poor model performance,

rather than to mistakes in my QDA coding.

Arguably, more work is needed around the ambiguity in the data sets used to

train ML models. Unfortunately, the uncertainty, ambiguity, and bias of ground

truth data used to train ML models is rarely questioned, even though numerous

external factors can significantly influence the data annotation process (Miceli,

Schuessler, and T. Yang, 2020). Indeed, reporting on a user study around medi-

cal images, Carmichael et al., 2024 pointed to “the complexity of clinical practice
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and interpretation, [and] the known imperfection of reference standards” as factors

that can introduce ambiguity in ground truth data even in that domain.

In more general terms, even semantically, the terms “false positive” and “false

negative” themselves imply that the model is wrong, reinforcing the perception in

ML experts that any deviation from the ground truth is a failure of the model rather

than calling into question the ground truth (which might not be well-defined). This

reflects a broader epistemological issue in ML, which involves overlooking the com-

plexities involved in how training data is created, a topic that has been explored in

discussions around the social construction of data sets and their impact on ML out-

comes (Bowker and Star, 1999; Miceli, Schuessler, and T. Yang, 2020; Gebru et al.,

2022).

Reflecting on and evaluating the ground truth is important for both non-experts

and practitioners. For non-experts, it can calibrate trust in the model by increasing

awareness of potential training mistakes, helping them avoid viewing the model as

an objective, external source of advice, and instead understanding its outputs as

contingent on the quality of the training data. For practitioners, it can facilitate the

process of improving model performance by identifying labelling inconsistencies

before tuning the model hyperparameters.

4.6.4.3 The Role of Machine Learning in Extending Human Analy-

sis

ML does not produce radical new knowledge. Instead, models learn patterns based

on the data they have been trained on. As a result, they can only offer sugges-

tions grounded in existing patterns, rather than generating entirely novel insights

to challenge the user’s own assumptions. The real value in using ML in analytical

processes such as qualitative data analysis lies therefore in its ability to extend the

user’s existing perspective to unseen data. Only human interpretation, critical think-

ing, and contextual knowledge can drive the analysis forward with deeper insights or

new understanding. Therefore, although complementary or conflicting predictions

from the ML model can stimulate deeper engagement with the data, users should

be aware that these outputs are not inherently novel insights but rather reflections of
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existing patterns in the training data.

In the absence of a well-defined ground truth, human expertise remains neces-

sary as ML cannot replace human judgement. Therefore, tools should be designed

with the assumption that users will still need to make critical decisions. In this

study, the most interesting insights into the data were gained from reviewing the

entirety of the data set, not just the classifications of the model. Enabling users to

question the data used to train the model is critical, especially because the quantifi-

cation of data can lead to a false perception of an external source of knowledge (in

non-experts especially).

4.7 Conclusion
This chapter presented an autoethnography on the Thematic Analysis Coding As-

sistant, an IML tool designed to support qualitative data analysis. The tool was used

to extend the thematic analysis performed on the semi-structured interviews from

a previous user study on TACA itself. Autoethnography was a particularly suitable

research method, as it addressed the limitations of the user study while enabling

sustained and genuine use of TACA to analyse and report complementary findings.

The experiences from the use of TACA revealed several findings that were not

originally anticipated. Shaped by the roles of developer, researcher and participant,

as well as experience in ML, the interactions with the tool differed significantly

from those of the participants in every phase of the IML cycle. The design choices

in TACA highlighted the importance of balancing transparency and usability to sup-

port both efficiency and accuracy in IML systems. The iterative engagement with

the model prompted reflections on potential structural changes to the analysis and

encouraged reflexivity. As opposed to the experiences of the participants, this was

not the result of viewing the model as an external, objective source of advice, but

rather a consequence of reviewing both the suggestions of the model and the data

used for training.

More generally, this work presented a first-hand account of how ML can be

used in analytical processes that do not involve a well-defined ground truth. In this
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context, it seems unrealistic to expect ML to produce new knowledge that can chal-

lenge existing assumptions. Instead, the true value of ML in analytical processes

lies in its ability to extend pre-established perspectives to unseen data. These con-

siderations highlight the need for better communication and education around the

capabilities and limitations of ML-driven tools, particularly in how they comple-

ment rather than replace human insight.

The findings on model transparency in this chapter suggest that interpretability

techniques could significantly enhance the user’s contribution to the iterative learn-

ing process of the model in IML, aligning with and expanding the insights from

Chapter 3. However, the effectiveness of these techniques should first be evaluated

in isolation, and evaluation methods in text classification seem lacking, with no

studies focused on task performance. Building on these findings, the next chapter

presents an evaluation of interpretability techniques for text classification.



Chapter 5

Evaluating Model-Agnostic

Interpretability Techniques for

Machine Learning Text

Classification: A User Study on

Predicting Model Outcome

The findings reported in Chapter 3 support the speculation that non-expert partici-

pants were subject to the belief of the ML model as an objective source of advice

partly due to a lack of transparency of the model (Section 3.5.2). From the responses

in the semi-structured interviews, it was clear that the participants did not consider

the probabilistic nature of the model and frequently overestimated its performance.

Model transparency also plays an important role in the findings of Chapter 4 (Sec-

tion 4.6.3.2), which suggest how interpretability techniques could play an impor-

tant role in optimising the user’s contribution to the iterative learning process of the

model in IML. This chapter builds on these findings to evaluate interpretability in

text classification in isolation.

Interpretability is crucial because it directly impacts trust, reliability, robust-

ness, causality, and usability of ML models (Doshi-Velez and B. Kim, 2017), partic-

ularly in high-stakes areas such as healthcare, finance, and criminal justice (Samek,
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Wiegand, and Müller, 2017). When models are interpretable, stakeholders, includ-

ing practitioners, regulators, and end users can understand how decisions are made,

which is essential to validate the correctness of the model and ensure that it operates

fairly and ethically (Langer et al., 2021).

Evaluating these techniques with user studies is critical, as the final goal of in-

terpretability is to improve human understanding, trust, and decision making around

ML models. However, the AI research community often prioritises performance

metrics as the primary method of evaluating these techniques, potentially over-

looking human-centred aspects that are critical to ensuring that explanations are

genuinely effective and meaningful in practice. In a recent systematic review on

evaluating XAI, Nauta et al., 2023 reported that, among 312 papers published in

the past 7 years at major AI and ML conferences, only 22% evaluated with human

subjects in a user study.

Within HCI, numerous user studies have been reported on interpretability tech-

niques, measuring self-reported satisfaction, trust, or understanding of model deci-

sions (Lage et al., 2019; Nourani et al., 2019; Papenmeier, Englebienne, and Seifert,

2019; Poursabzi-Sangdeh, Daniel G. Goldstein, et al., 2021b). However, it ap-

pears that interpretability techniques in text classifications have not been evaluated

through task performance. This chapter aims to address a methodological research

gap by conducting a user study in which participants are specifically asked to pre-

dict, or anticipate, the behaviour of a text classifier. The study therefore extends

the “forward simulation” method (Belle and Papantonis, 2021), which has been ap-

plied to different application domains, such as image recognition (Alqaraawi et al.,

2020), recommender systems (Scarpato et al., 2024), and decision-support systems

(Buçinca, Lin, et al., 2020), to text classification.

The chapter answers the following question:

RQ4: How do interpretability techniques affect users’ ability to predict

ML model behaviour?

In particular, the chapter evaluates the two most widely used interpretability

techniques. LIME, short for local interpretable model-agnostic explanations, cre-
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ates a local surrogate model that closely mimics the prediction of the underlying

opaque-box model for a single instance. Unlike the opaque-box model, these local

surrogate models are transparent and interpretable. SHAP, short for Shapley addi-

tive explanations, explains the prediction of an instance by calculating the contribu-

tion of each feature to that prediction using concepts derived from coalitional game

theory (Aechtner et al., 2022). The chapter also introduces and evaluates a novel

interpretability technique to address existing limitations that uses LLM-generated

summaries of the word importance weights generated by LIME.

The study design in this chapter is based on previous work evaluating

LRP saliency maps used in Convolutional Neural Network image classification

(Alqaraawi et al., 2020), and the RQ is thus deconstructed in a similar manner:

• RQ4.1: Do SHAP and LIME generated word importance heat maps assist

participants in predicting the outcome of a text classifier?

• RQ4.2: Are LLM-generated summaries of LIME word importance weights

an effective interpretability technique?

• RQ4.3: What are the effects of interpretability techniques on the confidence

of predictions of the model outcome?

• RQ4.4: How do different interpretability techniques influence users’ attention

toward specific features, and what effect does this have on their ability to

understand overall model behaviour?

The section below describes the methodology of the user study.

5.1 Method
The between-group study design proposed by Alqaraawi et al., 2020 was adopted

to evaluate whether interpretability techniques, specifically LIME and SHAP word

importance heat maps and LLM-generated summaries of LIME weights, can help

users predict the outcome of a multi-label text classifier. “Multi-label” classification

involves predicting zero or more mutually non-exclusive class labels for a given
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sample (Tsoumakas and Katakis, 2007). This task was chosen because it allows for

the implementation of a model that is more complex than a single-label classifier,

while also replicating a more realistic setting where more than one label can be

applied to a single text.

5.1.1 Materials

5.1.1.1 Data Set

A collection of 25 restaurant reviews published in the newspaper The Guardian1

between 2022 and 2023 was used as the data set for the study. 25 reviews was the

minimum length of the total text (30,000 words) on which the model performed

acceptably according to initial tests.

Designing user studies around AI systems is recognised as a challenging task,

as it is crucial to ensure positive participant experiences while maintaining ecologi-

cal validity (Kittley-Davies et al., 2019). Restaurant reviews were relatively engag-

ing, did not require specialised knowledge to understand, did not include insensitive

content for participants, and were diverse but shared enough common topics. More-

over, to resemble real-world ML classification scenarios, some level of subjectivity

and ambiguity was deliberately introduced in the study by labelling the text using

inductive qualitative analysis. This approach reflects the inherent complexity of

many real-world data sets, where data does not always fit neatly into well-defined

categories and ambiguity between classes (including annotator bias) is common

(Geva, Goldberg, and Berant, 2019; Miceli, Schuessler, and T. Yang, 2020).

5.1.1.2 Manual Labelling

The text of the reviews was manually labelled following an inductive qualitative

analysis by the researchers in 4 categories or classes: “food and drinks”, “people”,

“place”, and “opinions”. The labelling was refined iteratively by training the classi-

fier on the data set and correcting manual mistakes that would result in false positive

or false negative classifications, a process also typical of IML (Amershi, Cakmak,

et al., 2014).
1https://www.theguardian.com/food/restaurants+tone/reviews
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It is noted that subjective and arbitrary choices were made during the analysis,

for example, the topics “price” and “menu” belonging to the class label “place”. For

clarity, the participants were provided the table of topics manually labelled under

each class to the participants during the study (see Table 5.1 for the topic tables for

the classes “opinions” and “place”).

Table 5.1: Topics manually labelled belonging to class labels “opinions” and “place”.

Opinions Place
awards appearance

personal thoughts background
positive decor
negative layout
reviews location

menu
price

5.1.2 Model Architecture and Training

After manually labelling the data set, all the stop words defined in the NLP library

NLTK2 were excluded from the labelled samples. Global Vectors for Word Repre-

sentation (GloVe)3, a learning algorithm to obtain vector representations for words

pre-trained on generic Twitter data, were used to generate 50-dimensional word em-

beddings for each word, before calculating the arithmetic mean of the word vectors

for each sample according to the sentence2vec approach4.

The study used XGBoost5 as the model architecture, an optimised distributed

Gradient Boosting library for Python. Gradient Boosting models are considered

complex opaque-box models due to their ensemble nature, and are still widely used

today for classification and regression tasks (Rudin, 2019; Delgado-Panadero et

al., 2022). Additionally, these models are known to work well with smaller data

sets (Duan et al., 2020), as opposed to Neural Networks, such as the one used in

the study on image classification by Alqaraawi et al., 2020. A Deep Neural Net-

work was also tested by fine-tuning the pre-trained Transformer BERT (Devlin et
2https://www.nltk.org/
3https://nlp.stanford.edu/projects/glove
4https://github.com/stanleyfok/sentence2vec
5https://xgboost.readthedocs.io/
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al., 2019), on the same task. However, the state-of-the-art performance of this ar-

chitecture significantly reduced the occurrence of false positive and false negative

predictions, which would not have provided a sufficient number of these cases to

sample from to reproduce the study design accurately and gain insights from exam-

ples where the model would fail.

The data set was randomly split into training and test sets based on reviews

to avoid splitting the same review into different sets. 20 reviews were used in the

training set and 5 reviews in the test set. This resulted in a total of 1338 text samples

in the training set and 257 samples in the test set. Group K-Fold Cross-Validation

was then applied to the training set to identify the best performing hyperparameters

for the XGBoost model. The model was then trained on the samples in the training

set before being evaluated on the samples in the test set, achieving an average F1

score between the 4 classes of 0.92 on the training set and 0.84 on the test set.

5.1.2.1 Word Importance Heat Maps

The focus was placed on LIME and SHAP, as they are the two most widely

used XAI techniques today according to current literature across different domains

(Aechtner et al., 2022; Cesarini et al., 2024; Salih et al., 2024). Furthermore, model-

agnostic interpretability techniques allow comparisons across different model ar-

chitectures (Adadi and Berrada, 2018), extending the findings of the study beyond

Gradient Boosting classifiers.

The Python library ELI56 was used to generate LIME weights and SHAP7 was

used to generate SHAP weights. Weights are associated with each word in each data

sample and range from negative to positive values, depending on whether the word

has a positive or negative impact towards the classification of an individual class.

The word importance heat maps were generated using seaborn8, a statistical data

visualisation library. Replicating the colour palette of LRP saliency maps, red was

used to indicate words that support the classification, while blue indicated words

that go against the classification. Figure 5.1 shows the same true positive example

6https://eli5.readthedocs.io/
7https://shap.readthedocs.io/
8https://seaborn.pydata.org/
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for the class “opinions” with heat maps generated from LIME and SHAP weights.

opinions TP Task 1 TP Example 5
score: 0.96, distance: 0.38

ORIGINAL

"It's true that dinner didn't get off to a great start."

LIME

"It's true that dinner didn't get off to a great start."

SHAP

"It's true that dinner didn't get off to a great start."

Figure 5.1: Word importance heat maps generated from LIME and SHAP weights accord-
ing to the class “opinions”.

5.1.2.2 LLM-Generated Summaries

The limitations of local, example-based explanations have been widely recognised

and discussed in the literature. These techniques generate explanations that are rel-

atively easy to understand, but only capture the behaviour of the model within a

specific local region of the input space (Ribeiro, Singh, and Guestrin, 2018). Ab-

stracting local insights to a global understanding can be challenging as it is often

unclear whether the explanations produced by these techniques are applicable be-

yond the specific instance for which they were generated (Alqaraawi et al., 2020;

Chromik et al., 2021). To address these limitations, a novel interpretability tech-

nique was designed to capture the behaviour of the model on the entire input space.

Recent advances in LLMs have significantly improved their ability to sum-

marise text efficiently (Luo, Xie, and Ananiadou, 2023), as Automatic Text Sum-

marisation (ATS) has drawn considerable interest in both academic and industrial

circles (Jin et al., 2024). Recent work from X. Yang et al., 2023 revealed that the

performance of ChatGPT in summarisation tasks is remarkable, as indicated by

Rouge scores, showing that it can often rival traditional fine-tuning methods.

With this in mind, words from the entire training data set were summarised

according to their LIME importance weights using ChatGPT 4o. LIME weights

were selected over SHAP weights because an initial pilot study revealed that these
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performed slightly better in predicting the model outcome. The trained XGBoost

model was run on the training set, and a list of all words and LIME weights from

all the predicted training samples was extracted, using the average weight for words

appearing more than once. The lists for the class label “opinions” each contained

4351 pairs of terms and weights (ranging from -1.83 to 1.82 in “opinions” and -2.58

to 1.86 in “place”). The table was then uploaded to ChatGPT (see Appendix C.5.3

for the prompt used).

The focus was particularly on summarising words with a strong positive

weight, neutral weight, and negative weight, to reflect the word importance heat

maps in LIME and SHAP. 250 words was about the average length of the examples

in the other three conditions. During a testing phase, it was observed that longer

summaries were only more verbose and did not mention additional topics or words.

See Appendix C.5.1 and C.5.2 for the summaries generated for the classes “opin-

ions” and “place” used in the study.

The code used to train the text classifier, sample examples and tasks, and gen-

erate heat maps is released as open source9.

5.1.3 Tasks

The participants were shown 12 classification examples and asked to identify words

or topics to which the system is sensitive, as well as those not considered by the

system. Participants were also asked whether they would assign the class label to

the task sentence immediately before predicting the outcome of the model. This

question was included because in pilot studies following the think-aloud protocol, it

was noticed that participants would often make predictions based on whether they

would assign the label themselves.

As the main task of the user study, the participants were then asked to predict

whether the model will assign the class label to a given task data sample. Par-

ticipants were also asked to rate their confidence in the prediction using a 4-point

Likert scale. This was repeated 14 times, each time with a different set of examples

and task: 7 times for the label “opinions” and 7 times for the label “place”. These

9https://github.com/fmilana/explanations
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classes were chosen because the model performed best and worst on them, respec-

tively (0.84 and 0.78 F1 scores on the test set), and had enough false negative and

false positive classifications to sample examples from. To avoid order bias, half of

the participants were shown the “opinions” samples first, while the other half started

with “place”. At the top of each page, before the examples and questions, partici-

pants were also shown the topics that belonged to the class label (see Table 5.1). See

Appendix C.6 for an example of a single page from the study with LIME weight

importance heat maps.

At the end of the study, participants exposed to LIME and SHAP were also

asked whether the example categories (e.g. false positive) or the word importance

heat maps, or both, were more useful when predicting the model outcome.

5.1.3.1 Selection of Examples

The examples were selected from the training data set. This decision was made be-

cause these samples represent the data that the model has already learned patterns

from, which would allow the participants to observe cases that align with the un-

derstanding of the model. The examples were sampled based on their cosine vector

distance to the corresponding task sample, ensuring that participants were shown

examples conceptually similar to the sample on which they were asked to predict

model behaviour. Displaying the outcomes of the classifier has been shown to be

important for the effectiveness of explanation methods (Lai and Tan, 2019). There-

fore, the examples were categorised as true positive, false negative and false pos-

itive, replicating the study design on image classification (Alqaraawi et al., 2020)

according to the following distribution:

• 6 true positive examples: Samples that were manually labelled as class X

and that the model correctly classified as X

• 3 false negative examples: Samples that were manually labelled as class X

and that the model incorrectly did not classify as X

• 3 false positive examples: Samples that were not manually labelled as class

X and that the model incorrectly classified as X



5.1. Method 124

5.1.3.2 Selection of Tasks

The pilot studies revealed that the time spent on each task prediction was the same

as that of Alqaraawi et al., 2020. Therefore, the same number of tasks was sampled:

7 for each of the 2 classes. In the same fashion, 3 true positive, 2 false negative,

and 2 false positive samples were selected for each class to include cases where the

model outcome was both correct and incorrect. All tasks were selected from the test

set. Drawing samples from the test set allowed for an evaluation of the participants’

ability to predict model behaviour on new, unseen data, reflecting the real-world

application of ML models. The samples were based on their classification score, or

probability, according to the model. Since the prediction task should not have been

too easy or too difficult, the samples were restricted to have a midpoint classification

score of around 0.75 for true positive and false positive samples and 0.25 for false

negative samples (the classification thresholds were set at 0.5 for all classes, the

default value used in binary classification tasks). See Appendix C.7 for a list of all

the tasks selected.

5.1.4 Conditions

The study measured presence and type of interpretability technique as the main

independent variable. This factor has 4 levels:

• No explanations (baseline level): examples shown without word importance

heat maps

• LIME: LIME word importance heat maps shown on the examples (not on the

tasks)

• SHAP: SHAP word importance heat maps shown on the examples (not on

the tasks)

• Summaries: LLM-generated summaries shown of LIME weights of all sam-

ples in the training data set instead of the examples

A secondary independent variable was involved in the analysis to provide addi-

tional insights on the interaction effects of interpretability techniques: task category,
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i.e. the category of the sample on which participants predicted the model outcome.

This factor has 3 levels (the participants were unaware of the task category):

• True positive task

• False positive task

• False negative task

Alqaraawi et al., 2020 found no statistical significance in the presence of clas-

sification scores, so that factor was excluded from this study.

5.1.5 Participants

A total of 128 participants (32 for each condition level) was recruited from Pro-

lific10, an online crowd-sourcing recruitment platform. The recruitment criteria

were: minimum age of 18, fluency in English and a degree in a technical subject

(e.g., mathematics or engineering) to ensure that participants were more familiar

with technical terms such as “false positive”. Participants were also required to

have an approval rate of at least 95% on Prolific to ensure the quality of the re-

sponses. 56 of the 128 recruited participants stated that they had already learned

about ML (44%), and 31 had already worked with ML (24%).

5.1.6 Procedure

The study was hosted on Qualtrics11. Participants received the study instructions

(see Appendix C.3 and C.4) after reading the study information sheet (see Ap-

pendix C.1) and giving their informed participation consent (see Appendix C.2).

The instructions explained the basic notions of ML: the training and test data sets

and the classification task, as well as the classes used to manually label the restau-

rant reviews. The instructions also provided detailed explanations of the terms “true

positive”, “false positive”, “false negative” and “true negative”, and a description of

the heat maps or LLM-generated summaries, if present, including an example. Af-

ter receiving instructions on the user study task, participants were given 2 chances to

10https://www.prolific.co/
11https://qualtrics.com/
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answer a comprehension check correctly. The check required participants to iden-

tify a classification example belonging to the “false negative” category, and whether

individual words contributed towards or against the classification, if in the LIME or

SHAP condition level. Participants who did not answer the comprehension check

correctly twice were asked to return the study submission. Participants were com-

pensated for their time (40 minutes) with £6, in compliance to the local living wage.

The study was reviewed and approved by the Ethics Committee of UCLIC (Project

ID No: UCLIC/1617/017/Staff Costanza/Nowacka/Yang).

5.1.7 Pilot Studies

The methodology described above was the product of refinement based on the in-

sights gathered from two initial pilot studies, each involving 64 participants (16

participants in each group).

5.1.7.1 Pilot Study 1

When initially designing the study, it was incorrectly assumed that reading text

would take longer than going through the images in the study from Alqaraawi et al.,

2020. To keep the study length comparable and avoid fatigue effects, the partici-

pants in the No-Explanation, LIME and SHAP groups were shown 8 true positive,

4 false positive, and 4 false negative examples, and then asked to predict model be-

haviour on a batch of 4 tasks. The process was then repeated for the second class,

for a total of 8 tasks (compared to 14 in the final study design).

The sampling of tasks was considerably different. The tasks were sampled on

the predicted set and not the test set. The tasks were also not calculated on vector

distance from the examples. Instead, these were sampled following the distribution:

• 1 task near the minimum classification score

• 1 task near the first quartile of the classification scores

• 1 task near the third quartile of the classification scores

• 1 task near the maximum classification score
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Although the intention was to provide varying levels of difficulty for the pre-

diction task, the result was that the majority of tasks were too easy to predict: out of

8 total tasks, 3 were predicted correctly by at least 90% of participants, 6 by at least

80%. In this context, the heat maps could provide little to no value. The results of

Pilot Study 1 are reported in Appendix C.8.1.

5.1.7.2 Pilot Study 2

A second pilot study was run to sample tasks that were more difficult to predict. This

time, the tasks were sampled from the test set so that categories could be taken into

consideration too. Each class now included 2 false positives and 2 false negatives, as

these categories were assumed to increase the difficulty of the prediction. The tasks

were also sampled closer to the classification threshold, following the distribution:

• 1 false positive task near the bottom quartile of the classification scores

• 1 false positive task near the median between the threshold and the bottom

quartile of the classification scores

• 1 false negative task near the median between the threshold and the top quar-

tile of the classification scores

• 1 false negative task near the top quartile of the classification scores

As shown in Appendix C.8.2, the tasks were now too difficult. Due to chance,

the results actually showed a statistical difference in prediction accuracy after 32

participants took part in the pilot, but the final results did not reveal any difference

on prediction based on conditions.

After this pilot study, the design was changed to replicate the one from

Alqaraawi et al., 2020 more closely by: sampling the tasks based on cosine vec-

tor distance from the examples, sampling 2 true positives, 1 false positive and 1

false negative for each class, and asking participants to predict each of the 14 tasks

separately after being shown a set of 12 examples. The difficulty in task prediction

was also attributed to recognisable mistakes in the manual labelling of the training

data set. These were corrected following the process described in Section 5.1.1.2.
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5.2 Results

5.2.1 Outcome Prediction Accuracy

The Aligned Rank Transform (ART) method, a non-parametric approach to fac-

torial ANOVA (Wobbrock et al., 2011), was used, as Levene’s test indicated that

the data did not meet the assumption of homogeneity of variances (F(11,372) =

2.29, p = 0.01). This method was applied to reveal the effects of the condition (No-

Explanation, LIME, SHAP, and Summaries) and task category (true positive, false

negative, and false positive) on the accuracy of the predictions.

The ART ANOVA did not reveal a significant main effect of condition on

prediction accuracy (F(3,124) = 0.87, p = 0.46). The test revealed a significant

main effect of the category (F(2,248) = 61.81, p < 0.001,η2
p = 0.25), indicating a

medium to large effect size on accuracy. Additionally, a significant interaction effect

between condition and category was found (F(6,248) = 2.70, p = 0.01,η2
p = 0.04),

representing a small effect size for the interaction.

Post-hoc pairwise comparisons with Holm adjustment using the ART-

C method were conducted to explore the significant main effect of category

(η2
p = 0.25). The prediction accuracy on true positive samples was signif-

icantly higher than on false negative samples (mean = 66.9%,SD = 21.5%

vs. mean = 44.5%,SD = 27.9%, p < 0.001) and on false positive samples

(mean = 32.0%,SD = 26.2%, p < 0.001). The accuracy on false negative sam-

ples was also significantly higher than on false positive samples (p < 0.001).

The ART-C post-hoc analysis revealed significant interaction effects between

the condition and category on prediction accuracy, but these were only where both

the condition and the category were different. Refer to Figure 5.2 for the distribu-

tions of the total correct predictions.

Participants were asked to predict the model outcome for a total of 14 tasks. A

chi-square test was performed to reveal differences in prediction accuracy based on

the individual samples (see Appendix C.7). The test revealed a significant difference

for 2 of the 14 samples. The first is a false negative sample for the class label “place”

(χ2 = 20.65, p < 0.001,df = 3,Cramér’s V = 0.40):
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Figure 5.2: Distributions of total correct predictions to all questions by condition.

“The trout dish is £24.”

For this specific task, an Adjusted Standardised Residual post hoc test revealed

fewer correct predictions than expected in the No-Explanation condition (adjusted

residual = -2.16), and more correct predictions than expected in the summaries

condition (adjusted residual = 2.41).

The test also revealed a significant difference (χ2 = 4.37, p = 0.22,df =

3,Cramér’s V = 0.19) in prediction accuracy for the following false positive task

for the class label “place”:
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“Mendes is also the executive chef.”

The post hoc test revealed more correct answers than expected for this task in

the No-Explanation condition (adjusted residual = 2.3).

5.2.2 Confidence in Predictions

On a scale of 1 to 4, participants tended to be “slightly confident” in their predictions

on average (median = 3) across all conditions. See Figure 5.3 for the distributions

of the average confidence scores.

Figure 5.3: Distributions of average confidence scores (1-4) to all questions by condition.
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The Shapiro-Wilk tests for normality indicated that all groups significantly

deviated from a normal distribution (e.g., No-Explanation: W = 0.96, p = 0.005;

LIME: W = 0.95, p = 0.001). Due to these violations, the ART ANOVA was

run to reveal the effects of the condition and task category on the confidence of

the participants in their outcome predictions. The test did not reveal a signifi-

cant main effect of the condition on confidence (F(3,124) = 2.11, p = 0.10). The

test revealed a small significant main effect of category (F(2,248) = 5.21, p =

0.006,η2
p = 0.01), and a small significant interaction effect between condition and

category (F(6,248) = 2.55, p = 0.02,η2
p = 0.02).

Post-hoc pairwise comparisons with Holm adjustment using ART-C revealed

that confidence was higher for predictions of false negative samples than true pos-

itive samples (mean = 3.20,SD = 0.53 vs. mean = 3.08,SD = 0.52, p = 0.006).

Only one specific comparison—between the confidence in true positive predictions

using LIME and false negative predictions using Summaries was statistically signif-

icant (mean = 2.92,SD = 0.43 vs. mean = 3.34,SD = 0.50, p = 0.04). Chi-square

tests on individual tasks revealed no statistical significance.

5.2.3 Perceived Usefulness of Example Categories and Word

Importance Heat Maps

When asked whether the example categories or the word importance heat maps (or

both) were most useful, 5 participants in LIME selected only the categories, 13

participants selected only the heat maps, and 14 selected both. 7 participants in

SHAP selected only categories, 11 participants selected only the heat maps, and 14

selected both. A chi-square test did not reveal significant differences between the

two condition levels.

5.2.4 Mentioned Features

Before making a prediction of the outcome of the model, participants were asked

to identify 1-3 features that the model was sensitive to and those that it ignored,

if they found any (the answers were free text). These questions were made before

every prediction in the No-Explanation, LIME, and SHAP conditions (14 times),
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and before the first prediction made for each class label in the Summaries condition

(2 times), as only one summary per class label was included.

5.2.4.1 Mixed-Methods Analysis

A qualitative analysis was conducted on all the responses that participants gave to

questions related to features. This involved several passes of inductive coding lead-

ing to the three code groups: terms, topics, and language. Each separate concept

submitted to the free text questions was assigned to one of these groups.

In terms, all words included were those taken directly from the examples or

summaries. These could be words highlighted by the LIME and SHAP word impor-

tance heat maps or mentioned as examples in the LLM-generated summaries (e.g.

“good”, “London”, or “cheerful”). In topics, words were included that referred

to concepts abstracted by participants from the examples in the No-Explanation,

LIME, and SHAP conditions, or were possibly mentioned by the summaries in the

Summaries condition (e.g. “personal thoughts”, “location”, or “appearance”). The

words in language were those that referred to the style, tone, or specific linguistic

features of the text (e.g. “specific/descriptive”, “adjectives”, “names”). See Fig-

ure 5.4 for the average frequency of terms, topics, and language feature types per

question across conditions.

Kruskal-Wallis tests12 revealed statistical differences between conditions on

the frequency of terms (H(3) = 29.94, p < 0.001,η2
p = 0.22), topics (H(3) =

25.63, p < 0.001,η2
p = 0.22), language (H(3) = 8.55, p = 0.04,η2

p = 0.11), and

the total number of features (H(3) = 26.97, p < 0.001,η2
p = 0.19). The following

frequencies were calculated per question.

Regardless of the feature type, participants in the No-Explanation condition

mentioned significantly fewer features (mean = 1.86,SD = 0.32) than participants

in LIME (mean = 2.43,SD = 0.48) (p = 0.001), SHAP (mean = 2.54,SD = 0.46)

(p < 0.001), and Summaries (mean = 3.64,SD = 3.35) (p < 0.001). Participants in

Summaries mentioned more features than participants in LIME (p = 0.004) and in

12Kruskall-Wallis was run here instead of a factorial test like ART ANOVA as the task category
was not of interest as an additional factor. The participants were asked to mention features based on
the examples/summaries.
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Figure 5.4: The average frequency of terms, topics and language feature types by condition.

SHAP (p = 0.007).

More specifically, participants in Summaries mentioned more terms than

those in No-Explanation (mean = 3.14,SD = 4.2 compared to mean = 1.12,SD =

0.69, p < 0.001), LIME (mean = 2.12,SD = 0.87, p = 0.04) and SHAP (mean =

2.16,SD= 0.78, p= 0.04). Participants in LIME and SHAP mentioned more terms

than participants in No-Explanation (p < 0.001 in both cases).

Participants in Summaries mentioned more topics than participants in LIME

(mean = 0.78,SD = 0.45 compared to mean = 0.22,SD = 0.05, p < 0.001) and

SHAP (mean = 0.32,SD = 0.19, p < 0.001) but not No-Explanation (mean =

0.58,SD = 0.26, p = 0.18). Participants in No-Explanation mentioned more top-

ics than participants in LIME (p = 0.003) and those in SHAP (p = 0.02).

In terms of language, participants in Summaries mentioned more of these fea-

tures than participants in No-Explanation (mean = 0.46,SD = 0.07 compared to

mean = 0.21,SD = 0.04, p = 0.01) and SHAP (mean = 0.21,SD = 0.03, p = 0.02)

but not LIME (mean = 0.35,SD = 0.07, p = 0.25).

See Figure 5.5 for the most frequently mentioned salient features for both class
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labels across conditions.

Figure 5.5: Normalised frequencies of salient features mentioned by participants for sam-
ples about “opinions” (top 2) and “place” (bottom 2). Left: specific terms,
right: topics and language.

5.3 Discussion
After a combination of quantitative and qualitative analysis, the results of this study

reveal several key aspects of model-agnostic interpretability techniques applied to

text classification. The following subsections discuss the lack of effects of these

techniques on model outcome prediction and confidence, how they still influence

users to notice more specific features of the text, and the broader implications of the
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findings.

5.3.1 No Effects of Techniques on Model Outcome Prediction

The literature in XAI has often evaluated interpretability techniques by measuring

one or a combination of performance metrics (Atanasova et al., 2020; Cesarini et al.,

2024), user understanding (Cesarini et al., 2024), self-reported trust (Nourani et al.,

2019; Papenmeier, Englebienne, and Seifert, 2019; Cesarini et al., 2024), human-

grounded benchmarks (Atanasova et al., 2020; Mohseni, Block, and Ragan, 2020).

Instead, the design of this study followed the reasoning of Muramatsu and Pratt,

2001 to measure outcome prediction and adopted the evaluation method used in

related work (B. Kim, Khanna, and Koyejo, 2016; Alqaraawi et al., 2020; Buçinca,

Lin, et al., 2020; Waa et al., 2021) on different task domains to extend the findings

to text classification. The findings reveal that LIME and SHAP word importance

heat maps and LLM-generated summaries of LIME weights from the training data

set samples did not help participants anticipate model behaviour. Still, the majority

of participants in this study considered the LIME and SHAP heat maps useful to

predict the outcome of the model (84.4% and 78.1%, respectively).

5.3.1.1 Prediction Accuracy

On average, LIME and SHAP heat maps did not have a measurable effect on the

accuracy of the predictions in this study. These findings are in line with previ-

ous research comparing the effects of rule-based and example-based explanations

in decision support systems (Waa et al., 2021), which concluded that both types

of explanations are insufficient alone to significantly improve task performance.

They are also in line with work from Buçinca, Lin, et al., 2020, which found that

while explanations increased user trust and preference in another decision-support

system, they did not improve actual decision-making performance. However, this

result is in contrast to that of the same evaluation method applied to image classi-

fication (Alqaraawi et al., 2020), where LRP saliency maps produced a significant

positive effect on task performance, despite the success rates remaining relatively

low (60.7% with the saliency maps compared to 55.1% without the saliency maps).
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It could be argued that the difference in results between image and text classi-

fication can be simply explained by the quality of the explanations. Model-specific

methods such as LRP have been found to perform better than model-agnostic meth-

ods (Atanasova et al., 2020). However, the design of this study prioritised general-

isability across all types of models; gradient boosting was chosen due to the small

size of the training data set, even though Transformers are currently more commonly

used for text classification. Additionally, LIME and SHAP remain the most popular

interpretability techniques and are still widely used in this domain (Aechtner et al.,

2022; Cesarini et al., 2024; Salih et al., 2024).

Arguably a more plausible reason for the difference between the effects of

explanations in image and text classification is the concept of “unclear coverage”

mentioned by Ribeiro, Singh, and Guestrin, 2018, which refers to the ambiguity

and limitations associated with local explanations. More specifically, it is generally

unclear whether the explanations generated by these techniques apply beyond the

specific instance for which they were generated, possibly misleading users in pre-

dicting model behaviour in new situations. The number of human-identifiable fea-

tures in images is considerably lower than in text, which could help users abstract

higher-level concepts and patterns from the examples, therefore increasing “cover-

age”. In fact, participants in the image classification study mentioned features such

as “eyes”, “ears” and “legs” which are significantly more likely to reappear in task

image samples than individual terms such as “good”, “explain” and “menu” in task

text samples.

The “explanations by example” from LIME and SHAP may not be sufficient

to improve task performance in complex domains such as text classification. There

are several implications for the design of interpretability techniques. First, that

example-based local explanations are not enough to capture the nuances of com-

plex data structures found in text, and could likely benefit from a combination with

rule-based global explanations, as discussed in previous work on other data types

(B. Kim, Khanna, and Koyejo, 2016; Scott M. Lundberg and S.-I. Lee, 2017; Waa

et al., 2021). The contrast between image and text classification also suggests that
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interpretability techniques need to be tailored to specific tasks depending on the

number of identifiable features. Techniques that work well on fewer and more tan-

gible features like in images may not translate effectively to tasks with more abstract

features, such as text. This observation aligns with work by Poursabzi-Sangdeh,

Daniel G Goldstein, et al., 2021a, which shows that model transparency is highly

dependent on the number of features involved.

The findings also confirm the importance of evaluating techniques on task per-

formance rather than relying only on subjective measures such as perceived useful-

ness, as most participants reported finding the heat maps useful despite not actually

making more accurate predictions. This indicates that some metrics used for eval-

uation in the literature may not completely measure the real effectiveness of these

techniques when applied in real-world decision-making scenarios.

In an attempt to address the potential issue of “unclear coverage” of local ex-

planations, the study also included LLM-generated summaries of LIME word im-

portance weights that could provide a global approximation of the behaviour of the

model. However, the summaries also failed to significantly increase the accuracy

of the predictions. The lack of effects of LLM-generated summaries on prediction

accuracy suggests that, while they offer a global perspective on model behaviour,

they may also oversimplify the complexity required for accurate decision-making.

By abstracting information, summarisation is likely to omit essential details, which

can mislead users, particularly in text classification where data is rich and variable.

This issue is illustrated by the role of the topic “price” in this study. Text sam-

ples related to price were manually labelled in the category “place”. However, these

were only a small subset compared to the samples about location or hospitality, so

the words related to price with a positive weight in the list extracted from LIME

also appeared very infrequently. As a result, the summary of “place” contained no

mention of prices (see Appendix C.5.2). An effect of this can be seen in the predic-

tion accuracy of the task (“The trout dish is £24”), on which more participants in the

Summaries condition predicted a negative model outcome. The increased accuracy

of participants in Summaries for this individual task is likely fortuitous. The model
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should have recognised the price but did not (false negative). However, participants

probably predicted a negative outcome not because they understood the behaviour

of the model, but because they had no information regarding prices.

The insight into the role of “price” in prediction accuracy emerged largely

because the study deliberately introduced ambiguity and subjectivity in the data set

during the manual labelling process. Had the relationship between the topic and the

class been obvious, this nuanced effect on prediction accuracy might not have been

observed. Such complexity mirrors real-world scenarios where the ground truth is

not always clear-cut and can lead to unexpected effects on model behaviour and

user interpretations. User studies on ML should account for these complexities to

provide more realistic assessments of user behaviour and more actionable results.

Overall, the findings suggest that summarisation of word importance weights

should be carefully designed to avoid presenting the same issue of “unclear cov-

erage” in local explanations. Currently, summaries of words based on their im-

portance weights seem to be as ineffective in improving task performance as con-

ventional rule-based explanations (Waa et al., 2021). Future work could evalu-

ate hybrid approaches that combine LLM-generated summaries with either local,

example-based explanations, or interactive elements enabling users to explore spe-

cific features in more depth.

5.3.1.2 Prediction Confidence

The results indicate that none of the explanation types have an effect on the con-

fidence in the prediction of the model outcome. Participants were “slightly confi-

dent” in all conditions. This finding is in contrast with the results of previous studies

that explanations give users a false sense of confidence by overestimating their un-

derstanding of model behaviour (Rozenblit and Keil, 2002; Bussone, Stumpf, and

O’Sullivan, 2015; Schaffer et al., 2019) and the concept of “illusion of explanatory

depth” (IOED), the phenomenon where users feel more confident in their under-

standing due to the presence of explanations (Rozenblit and Keil, 2002; Collaris,

Vink, and Wijk, 2018; S. T. Mueller et al., 2019; Sokol and Flach, 2020; Chromik

et al., 2021).
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The discrepancy could be due to several factors. One possibility is that, unlike

the studies mentioned above, the participants in this study had a technical back-

ground and almost half of them had already learned about ML, which could have

contributed to a more cautious and critical evaluation of the explanations provided.

This would indicate that the potential for explanations to induce a false sense of con-

fidence may be mitigated when users have a stronger foundation in the underlying

technology.

Interestingly, participants were more confident in their predictions of false neg-

ative samples than true positive samples. However, the prediction accuracy on false

negative samples was significantly lower than on true positive samples. This sug-

gests that certain features or patterns in the false negative samples were misleading.

For example, LIME and SHAP might have highlighted certain words in red that

participants believed were strongly indicative of the given class label.

This misalignment between confidence and task performance reveals the sig-

nificance of designing techniques that not only help users understand the decisions

of the model but also guide them in evaluating their own understanding more accu-

rately. If explanations inadvertently reinforce incorrect assumptions or emphasise

features that are not truly indicative of the decision-making process, they can lead

to overconfidence in incorrect predictions. Additionally, the findings present an op-

portunity to further investigate the effects of explanations, whether local or global,

on user confidence in relation to the technical knowledge of the users.

5.3.2 Effects of Techniques on Feature Attention

On average, participants who were exposed to any of the three interpretability tech-

niques evaluated mentioned significantly more salient and ignored features. This

finding is in line with similar work on image classification (Alqaraawi et al., 2020).

However, since these participants did not experience higher prediction accuracy,

it also confirms that transferring knowledge about potential features to new sam-

ples, where they might appear in a different context, is challenging (Chromik et al.,

2021).

Participants in the LIME and SHAP condition levels were particularly drawn to
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individual terms, more so than those in No-Explanation. The results clearly indicate

that participants paid attention to the terms highlighted by the heat maps in red and

blue. In contrast, participants who did not see any explanations were more prone to

mention topics as salient or ignored features. Both of these findings are consistent

with observations reported in studies involving image classification (Alqaraawi et

al., 2020).

The terms most frequently mentioned by the participants exposed to heat maps

include words like “good”, “feel”, “explain” and “profound” for the class label

“opinions”, and “menu”, “restaurant”, “place” and “town” for the class label “place”

(see Figure 5.5). Notably, none of these words are present in the respective task ex-

amples (see Appendix C.7). In the context of interpretability, Chromik et al., 2021

argue that people overestimate their ability to accurately recall observations, leading

to discrepancies between stored mental images and the original facts. Additionally,

most complex systems are hierarchical, and if people can name and describe indi-

vidual parts on the first level of the hierarchy, they often assume to understand how

the overall system works. The participants in the explanation condition levels of

this study did not report higher levels of confidence, but this assumption could have

driven them to overlook broader patterns in the data.

The fact that word importance heat maps draw user attention away from gen-

eral attributes of samples, like topics or language, is significant because these at-

tributes might help users extract more transferable knowledge of model behaviour.

Arguably, by focusing too narrowly on specific highlighted terms, users could have

missed general patterns or concepts that were likely to reappear in the tasks (at least

more frequently than the individual terms). An opportunity for future work is to

investigate further how participants reason to predict tasks based on the examples,

for example through a think-aloud protocol or pair studies that could provide mean-

ingful qualitative data to test this hypothesis.

Unsurprisingly, summaries elicited participants to mention more topics than

those in the LIME and SHAP conditions. These were mostly limited to the ones

mentioned in the summaries themselves, as participants hardly ever generalised to
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wider or different patterns. Selective attention to the topics most frequently men-

tioned in the summaries could have led these participants to miss other potentially

important features present in the tasks. For example, the task for the class label

“opinions” with the lowest prediction accuracy from participants in Summaries

(0.09) includes words with a positive connotation: “pleasingly”, “pretty” and “per-

fect” (see Appendix C.7). These terms are in line with the salient topics mentioned

in the summary, “positivity and emotional well-being”, and in fact participants men-

tioned “positive” and “thoughts” as salient features and the majority (0.91) predicted

a positive model outcome. However, the task was actually a false negative, most

likely because the vast majority of words, such as “anchovies”, “tomatoes”, and

“eggs” describe specific details related to food, and the few positive words failed to

push the average embedding toward the space where the entire sentence would be

classified as “opinions”.

These findings reinforce the need to design interpretability tools and tech-

niques that not only indicate important features, but also encourage users to con-

sider broader context and patterns. For example, B. Kim, Wattenberg, et al., 2018

introduced an interactive technique to enable users to test and explore the influence

of various high-level concepts on the classification result. Building on this work, fu-

ture research could be focused on tools that allow users to combine local and global

explanations to develop a holistic understanding of the decision-making process of

the model.

5.4 Conclusion
This chapter reported on a between-group user study aimed to evaluate the two

most widely used model-agnostic interpretability techniques, LIME and SHAP, as

well as a novel summarisation technique based on LIME-weighted words, in text

classification on a data set consisting of labelled newspaper restaurant reviews. This

work replicated a similar study on LRP saliency maps on CNN image classification,

where the technique was evaluated based on how accurately participants were able

to predict model outcome.
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The results revealed that, unlike LRP saliency maps in image classifications,

the interpretability techniques evaluated in text had no substantial effects on the pre-

cision or confidence in model outcome prediction. When asked to mention features

that the model found salient and ignored, participants with no explanations iden-

tified more topics, those with LIME and SHAP heat maps identified more terms,

and those with Summaries identified more features overall. However, the features

mentioned with explanations were not particularly indicative of model behaviour.

The importance of evaluating techniques on task performance, rather than

solely on user feedback, is a crucial takeaway from this study. Although users may

perceive certain explanations as helpful, this does not necessarily translate into bet-

ter outcomes. Future research should continue to explore metrics that can accurately

capture the effectiveness of interpretability techniques in real-world applications.

This study contributes to the growing body of literature on interpretability in AI

by revealing the limitations and potential pitfalls of current techniques in the context

of text classification. Example-based explanations provide valuable insights into

model behaviour, but they should be complemented by global, possibly interactive

explanations. These could help users grasp not only specific features influencing a

single prediction, but also the broader patterns and context, leading to more effective

and informed decision-making in real-world applications.



Chapter 6

General Discussion and Conclusions

This chapter summarises the key findings of the thesis and explores their design im-

plications. It also provides a general discussion, addresses limitations, and suggests

directions for future work.

6.1 Summary and Key Findings
Chapter 1 introduced the increasing integration of ML into diverse fields, enabled

by advances in algorithms, computational power, and large data availability. De-

spite its technical depth, ML is increasingly available to users who are not trained

to understand its inner workings. This means that human-AI interaction has become

increasingly important to study, especially as ML models become more complex.

This thesis evaluated interaction with AI systems by investigating how users per-

ceive and engage with text classifiers, with emphasis on IML and XAI. The deci-

sion to use QDA as an application area was made to introduce ambiguity in the data,

mirroring real-world scenarios where the ground truth is not always well-defined,

and allowing for a more nuanced exploration of user interpretation and critical re-

flection.

Chapter 2 reviewed the current state of the HCI and AI literature on human-AI

interaction, IML and XAI. The literature highlights several challenges in design-

ing for human-AI interaction, particularly around capability uncertainty and out-

put complexity, and thus calls for a deeper understanding of the human experience

and psychology interacting with these systems. IML and XAI emerge as promis-
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ing fields, where the first enables users to engage iteratively with models, and the

second provides interpretable outputs that touch on aspects beyond transparency.

Prior research has focused on guidelines and implications of IML, but a significant

research gap remains in utilising it as a means to understand broader user inter-

action dynamics. On the other hand, user studies in XAI are considered essential

for evaluating interpretability techniques, but user biases have been shown to af-

fect the subjective evaluations that are commonly designed. This chapter motivated

the research questions by identifying opportunities to explore user interactions with

a functional IML tool and the effectiveness of XAI in text classification through

model outcome prediction rather than self-reported metrics.

Chapter 3 presented a user study in which 20 participants who were not experts

in ML used TACA, an IML tool designed and developed to assist users in QDA.

Through a combination of a quantitative analysis of the automated interaction logs

and a qualitative analysis of the responses in a semi-structured interview, the aim of

the study was to answer the two RQs:

• RQ1: How do non-expert users perceive ML when analysing ambiguous

data?

• RQ2: How do non-expert users’ perceptions of ML influence their inter-

action with it?

The data collected revealed several key findings: 1) ML has value in the QDA

workflow as the coding suggestions encouraged a more critical analysis of data, 2)

ML encourages reflexivity when participants are confronted with conflicting classi-

fications that challenge their own analysis, 3) users with no experience in ML tend

to perceive the model as an external, objective source of advice, and 4) they hold

themselves accountable when the model does not perform well, providing a variety

of justifications regarding data set size, analysis structure, and manual mistakes.

As mentioned above, the participants in this study revealed a tendency to per-

ceive the model as objective and authoritative, blaming themselves for the short-

comings in performance. An important and unexpected consequence is that the par-

ticipants engaged only to a limited extent with the IML features of TACA. Building
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on these findings, Chapter 4 reported on an autoethnography on TACA from the

perspectives of developer, researcher and participant. The study aimed to uncover

nuances in the interactions with the tool that might have been missed in the previ-

ous study due to several other limitations, such as the lack of familiarity with the

data and the short-term, isolated nature of the study design. The study allowed for

a direct comparison between the results of the qualitative analysis conducted on the

interviews in the previous study and those of the analysis conducted with the use of

TACA. This chapter also discussed the findings beyond the scope of QDA and thus

attempted to answer the following RQs:

• RQ3: How can IML be used to support the analysis of ambiguous data?

The key findings of the study include: 1) as opposed to the experiences of the

participants in the user study, the model was not viewed as an objective source of ad-

vice due to prior experience in ML and in development, 2) the iterative engagement

with the model suggestions and the training data prompted reflections on poten-

tial structural changes to the analysis as well as uncovering additional insights, 3)

balancing usability with model transparency could support both the efficiency and

accuracy in IML by facilitating the identification of classification inconsistencies,

and 4) it seems unrealistic to expect ML to generate radical new knowledge that can

challenge existing assumptions.

Chapter 5 builds on the considerations on model transparency made in the

previous chapters to evaluate the two most widely used local interpretability tech-

niques, LIME and SHAP, and a novel global technique using LLM-generated sum-

maries of LIME word importance weights. The study involved 128 participants

who were asked to predict model behaviour based on the explanations, an approach

aimed to address a methodological research gap of XAI user studies in text classifi-

cation, in order to answer the following RQ:

RQ4: How do interpretability techniques affect users’ ability to predict

ML model behaviour?

Mirroring the design of a previous user study evaluating LRP saliency maps

used in image classification, the question was split into 4 sub-questions:
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• RQ4.1: Do SHAP and LIME generated word importance heat maps assist

participants in predicting the outcome of a text classifier?

• RQ4.2: Are LLM-generated summaries of LIME word importance weights

an effective interpretability technique?

• RQ4.3: What are the effects of interpretability techniques on the confidence

of predictions of the model outcome?

• RQ4.4: How do different interpretability techniques influence users’ attention

towards specific features, and what effect does this have on their ability to

understand overall model behaviour?

The data collected revealed the key findings: 1) none of the interpretability

techniques had substantial effects on precision or confidence in outcome prediction,

2) participants with no explanations identified more topics, those exposed to LIME

and SHAP heat maps identified more terms, and those exposed to LLM-generated

summaries identified more features overall, and 3) the features mentioned by the

participants were not indicative of model behaviour.

The contributions made by this thesis are summarised in Table 6.1.

6.2 Design Implications
The work presented in this thesis has several implications on the design of human-

AI interaction with text classifiers, which are summarised in this section.

6.2.1 Chapter 3 Design Implications

• Systems used for analytical purposes should be designed to promote critical

engagement with data by providing clear and insightful feedback on both gen-

erated classifications and manually labelled data samples to allow for compar-

isons in classification.

• Designers should account for the non-expert perception of the ML model

as an external source of objective advice and the consequent self-blame for

errors. Clearly communicating the probabilistic nature of ML and providing
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Table 6.1: A summarised list of contributions made by this thesis.

Contribution Type Contribution Chapter
System Designed, developed and implemented

TACA, a fully-functional IML application
to assist users in QDA.

Chapter 3,
Chapter 4

Methodological Conducted studies on ML using ambigu-
ous data rather than well-defined ground
truth, allowing for exploration of user in-
terpretation and decision-making.

Chapter 3,
Chapter 4,
Chapter 5

Methodological Conducted the first autoethnography on
IML, demonstrating how self-study can
generate new insights even after a system
has been designed and evaluated.

Chapter 4

Methodological Conducted the first user study based on
model outcome prediction (forward sim-
ulation) in text classification in order to
address methodological limitations of al-
ternative approaches in XAI.

Chapter 5

Empirical Identified the perceived role and value of
ML in analytical processes.

Chapter 3,
Chapter 4

Empirical Identified the non-expert perception of
ML as an objective source of advice and
self-blame for poor model performance.

Chapter 3

Empirical Reported on personal experiences with
IML, noting the influence of prior ML
knowledge, structural reflections on the
analysis prompted by training and pre-
dicted data, the role of transparency, and
limitations of ML to produce radically
new insights.

Chapter 4

Empirical Provided evidence of the lack of sub-
stantial effects on outcome prediction of
the two most widely used local inter-
pretability techniques, LIME and SHAP,
and a proposed global technique based on
LLM-generated summaries, in text classi-
fication.

Chapter 5

Empirical Demonstrated that participants without
explanations identify more topics, while
those with LIME/SHAP focus on terms,
and LLM-generated summaries lead to
identifying more features overall, though
these features do not reflect model be-
haviour.

Chapter 5
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explanations for model behaviour could help users develop a more nuanced

understanding and reduce unwarranted self-blame.

• ML applications can benefit from data aggregation to support model inspec-

tion and feedback assignment. However, designers should include comple-

mentary features, such as tooltips, additional context, and interactive tutorials,

to help users understand the relationship between grouped data and re-training

the model.

6.2.2 Chapter 4 Design Implications

• The design of IML systems should account for different user needs and offer

flexibility for those who prioritise efficiency and accuracy differently based

on their constraints and goals. Users constrained by time or resources may

benefit from batch re-labeling for quicker progress, while those able to invest

more effort can enhance model performance through meticulous, individual

refinements.

• In IML, interpretability should be designed to take an additional role by opti-

mising the user’s contribution to the iterative learning process of the model.

• Designers should incorporate tools that encourage users to reflect on and eval-

uate the ground truth data, helping non-experts calibrate trust by understand-

ing model outputs as data-dependent, and assisting practitioners in identifying

labeling inconsistencies to improve model performance before hyperparame-

ter tuning.

• Tools using ML to assist with analytical processes should be designed with

the assumption that users will still need to make critical decisions, as ML

models only reflect patterns from training data and rely on human insight

for deeper and contextually grounded interpretations. This approach ensures

that users view model output as prompts for further analysis rather than as

conclusive insights.
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6.2.3 Chapter 5 Design Implications

• Interpretability techniques need to be tailored to specific tasks depending on

the number of identifiable features, because techniques that work well on

fewer and more tangible features like in images may not translate effectively

to tasks with more abstract features, such as text.

• Interpretability techniques should not only indicate important features, but

also encourage users to consider broader context and patterns. Tools could

combine local and global explanations to help users develop holistic under-

standing of the decision-process of the model.

• Techniques should be evaluated also on task performance rather than relying

only on subjective measures such as perceived usefulness, as most partici-

pants reported finding the heat maps useful despite not actually making more

accurate predictions.

6.3 Discussion
The findings reported in this thesis confirm the importance of research in human-AI

interaction. The following paragraphs provide an overview of how these findings

can be explained and what they mean in a more general context.

6.3.1 Extended Benefits of AI Beyond Model Performance

Chapters 3 and 4 revealed that there is value in applying ML to the analysis of am-

biguous data. In this context, the benefits of ML extend beyond the automation or

acceleration of data analysis that can be found in other domains, such as finance,

manufacturing, and recognition tasks. When users are presented with conflicting

suggestions from the model, their own interpretation of the data is questioned. Con-

sequently, users are encouraged to challenge their positionality and critically reflect

on their initial assumptions. In the analytical process, this reflexivity is crucial, as it

allows for the adjustment of potential biases, leading to more nuanced and contex-

tually aware interpretations.
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AI systems are often designed for accuracy with specific emphasis on per-

formance measures, ensuring that, once the model is deployed, it can generalise

learned patterns to unseen data. The findings of Chapters 3 and 4 suggest that this

approach is only appropriate in domains where a well-defined ground truth exists

and accuracy is essential for practical application. Achieving an initial average of

0.58 for the F1 score in the study of Chapter 3, the model deployed in TACA was not

particularly accurate. However, users were still able to derive meaningful insights

and engage in critical reflection from the model output. This is because, as long as

the initial interpretations are challenged, it matters less whether the classifications

of the model are strictly accurate.

The utility of AI systems extending beyond performance has implications on

a wide range of applications. For example, in educational technology, a system

might suggest learning paths or highlight areas of struggle for students. Even if

the classification of strengths and weaknesses is not perfect, the system can still

encourage teachers to reflect on their students’ needs and to adapt teaching methods.

In more creative domains, the system could suggest novel ideas, propose stylistic

adjustments, or highlight potential areas for improvement. When suggestions do not

perfectly align with the user’s intentions, they can still encourage users to reconsider

their approach or explore alternative perspectives, enriching the final work through

critical reflection.

In general, these findings align with calls for a shift in how AI is evaluated in

domains where insights and reflections matter. As found in Chapter 3 and discussed

in Chapter 4, AI system designers can benefit from prioritising transparency, flexi-

bility and engagement over just performance. Gillies et al., 2016 argued that popular

ML approaches do not fully exploit the nature of applied ML as a co-adaptive pro-

cess. Indeed, not only does the user influence the behaviour of the model, but they

also adapt to using the system more effectively and may even modify their goals

based on what is learned through the tool. The intrinsic value of AI in these cases

lies therefore in its ability to support an evolving understanding.
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6.3.2 Challenges in Perceiving AI as an Objective Authority

Despite the advantages of using AI to promote critical reflection, Chapter 3 also

revealed a potential challenge: participants who were non-expert in ML tend to per-

ceive the model as an external, objective source of authority. This perception can

lead users to overly rely on the output of the model, viewing it as more factual or

unbiased than it actually is. While challenging personal interpretations is beneficial,

it arguably requires a balance; if users fail to acknowledge the subjectivity inherent

to the data and see the suggestions of the model as objective truths, the intended

reflexivity can be undermined. Not only does this misinterpretation limit the en-

gagement with the model (interrupting the IML cycle), it also introduces the risk of

potentially reinforcing existing biases rather than revealing them.

There are many cases in which the application of AI to ambiguous data can

pose significant risks. AI is currently being utilised in various aspects of hiring and

recruitment (Hunkenschroer and Kriebitz, 2023). When assessing candidate quali-

ties like “potential for personal growth”, ML models can present recommendations

that are interpreted as definite, resulting in biased hiring decisions. Automated con-

tent moderation on social media relies on context-dependent and culturally nuanced

definitions of offensive or inappropriate content (Gorwa, Binns, and Katzenbach,

2020). If moderation relies excessively on AI without human interpretation, this

poses the risk of unjust penalties and stifling diverse viewpoints, and potentially

causing reputational damage to the platforms. In legal document review, AI is used

to highlight relevant cases or suggest interpretations (Ashley, 2017), but non-expert

users may risk missing crucial legal nuances, potentially leading to misinterpreta-

tion and harm their clients’ cases.

The tendency to view AI outputs as authoritative can perhaps be explained by

considering several factors. ML has recently achieved remarkable results in natural

language understanding, image recognition, and predictive modelling. Particularly

influential are applications of generative AI, such as ChatGPT and Stable Diffusion,

which have reshaped the public’s perception by providing tangible examples of AI

producing human-like outputs. This rapid progress has been unprecedented and
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has contributed to a perception of AI systems as highly accurate. In recent years,

extensive media coverage and hype promoted by the tech industry has probably

also contributed to heightened public perceptions of AI’s capabilities and impact,

often skewing these perceptions towards either an overly optimistic or pessimistic

outlook on AI. This tendency towards polarised views, as noted by Brauner et al.,

2023, can affect public expectations and potentially create unrealistic or fear-driven

attitudes toward AI’s role in society. In both cases, these perceptions are fuelled

by the notion that AI is inherently high-performing and accurate, regardless of the

complexities and potential biases in its underlying data and algorithms.

In reality, ML models are limited to capturing patterns present in the data they

are trained on, and are therefore inherently shaped by any biases or limitations

within that data. Chapter 4 provided a first-hand account illustrating how aware-

ness of the model’s dependence on training data helped calibrate perceptions of its

reliability. However, findings in Chapter 3 showed that, while the interviews re-

vealed that the non-expert participants shared this awareness, the same interviews,

as well as their behaviour and experience with TACA, demonstrated that this aware-

ness alone was not enough to prevent them from interpreting the outputs as objective

and unbiased conclusions. This suggests that more guidance is needed to help non-

expert users align their perceptions more closely towards the probabilistic nature of

ML models and their inner workings. Performance metrics and confidence scores

alone can be confusing or misleading, and non-expert users may not have the tech-

nical knowledge to interpret ML-specific measures. In IML, they tend to favour

model quality as the task completion criteria (Dudley and Kristensson, 2018; Q.

Yang, Suh, et al., 2018), which is undesirable when the data is ambiguous, as dis-

cussed in Chapter 4 (see Sections 4.5.3.1 and 4.6.1.1).

The concept of guidance often emerges in the literature on “machine teaching”,

a term that has been recently been reframed by Simard et al., 2017 to place focus

on the efficacy of the teaching process in IML by measuring performance relative

to human costs, such as productivity, interpretability, and robustness. In a study

exploring how novice users trained an IML model using a web-based sketch recog-
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nition tool, Sanchez et al., 2021 concluded that providing structured guidance in

sequencing examples and explaining model feedback could help novice users build

more effective training strategies, enhancing their engagement and improving their

understanding of the model. The studies reported in Chapters 3 and 4 similarly em-

phasise the need for guidance to support non-expert interactions and drive model

refinement.

These observations point to model transparency as a crucial element in ef-

fectively managing user expectations and fostering more appropriate reliance on AI

systems. In fact, studies have shown that enhancing transparency by providing users

with explanations of model behaviour and limitations can help non-experts better

understand model outputs (Poursabzi-Sangdeh, Daniel G. Goldstein, et al., 2021b).

The benefits of interpretability would therefore appropriately address the findings

of Chapter 3 by mitigating the risk of overestimating the objectivity of model out-

puts. In IML, transparency also promotes a collaborative relationship between the

user and the model, where the user feels encouraged to question and refine their in-

terpretations rather than accepting the output as final (Stumpf, Rajaram, Li, Wong,

et al., 2009; Amershi, Cakmak, et al., 2014). However, the reported advantages of

introducing model transparency are highly dependent on the choice and quality of

the interpretability techniques used, as unsuitable or poorly tailored explanations

can still lead to confusion or reinforce misconceptions (Nourani et al., 2019). In

a study from Bansal et al., 2021, explanations were actually found to increase the

chance that users accept the AI’s recommendation, regardless of its correctness.

The evaluation of these techniques is therefore essential to ensure that they effec-

tively help users develop an accurate and balanced understanding of AI outputs and

limitations.

6.3.3 Model Transparency to Manage User Perceptions of ML

The study presented in Chapter 5 was conducted in isolation, with the intention of

building on the findings when integrating interpretability techniques into TACA in

the future. This approach was necessary due to the lack of previous work specif-

ically evaluating techniques in text classification following task performance mea-
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sures such as the “forward simulation” approach (Belle and Papantonis, 2021). As

discussed in Sections 2.3.2 and 5.3.1.1, various evaluation methods have revealed

contrasting results both between and within ML application domains. Even consid-

ering different evaluation methods, very few studies have been conducted on text

classification compared to image recognition, recommender systems, and decision-

support systems.

Although the particular task of predicting how a piece of text would be classi-

fied might seem trivial, the insights gained from this task become important when

considering the broader implications. When techniques enable model behaviour

prediction, users are more likely to identify inconsistencies, question automated de-

cisions, and adjust their reliance on the model based on a deeper understanding of

the outputs. The two main challenges in designing human-AI interaction are ca-

pability uncertainty and output complexity (Q. Yang, Steinfeld, et al., 2020). If

interpretability techniques help users anticipate model behaviour, they can mitigate

both of these issues by fostering a more transparent and reliable interaction with the

AI system.

The fact that the two most widely used model-agnostic interpretability tech-

niques were insufficient for participants to anticipate model behaviour reflects the

finding of other evaluations of different techniques in different application domains

(Buçinca, Lin, et al., 2020; Waa et al., 2021). The use of ambiguous data intro-

duced an additional layer of complexity in the study that required participants to

actively interpret the labelling patterns and the output of the model rather than re-

lying on straightforward predictions. It is easy to imagine how a different data set

would have simplified the predictive task. However, ambiguity mirrors many real-

world scenarios where data often lacks clear boundaries or universally agreed-upon

interpretations. These are the scenarios around which the studies in Chapters 3

and 4 were designed, and arguably where transparency is needed the most to un-

derstand model behaviour. This is because the user is also required to recognise

and understand the subjective perspective embedded in the training dataset by the

manual labeller, and that is reflected in the model output. The example given in
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Section 5.3.1.1, where text samples related to price were manually labelled in the

category “place”, illustrates how introducing subjectivity in the data set compli-

cates the interpretation of model behaviour. In this case, the participants might

have benefitted from techniques that paid more attention to the underlying labelling

assumptions and highlighted potential ambiguities.

Based on the findings reported in Chapter 5, it seems unreasonable to expect

that the evaluated interpretability techniques could provide meaningful value in an

IML system like TACA. Instead, it is possible to draw on previous work in XAI

to speculate that a combination of local and global techniques or an interactive ap-

proach could perhaps yield more promising results (B. Kim, Khanna, and Koyejo,

2016; Scott M. Lundberg and S.-I. Lee, 2017; B. Kim, Wattenberg, et al., 2018;

Waa et al., 2021). This is also suggested by the findings on feature attention re-

ported in Section 5.3.2: local explanations drew too much attention to individual

terms, whereas the global explanation based on LLM-generated summaries pro-

vided an overview that was too general and abstract compared to the given tasks.

At first glance, these two approaches seem to complement each other and could be

combined to balance detailed insights with broader context.

In general, the vast range of evaluation methods used to measure the effective-

ness of interpretability techniques is a testament to the difficulty of establishing a

universal standard. In a systematic review of the evaluation methods used in XAI,

Nauta et al., 2023 identified 12 different measurable explanation quality proper-

ties. In this context, it seems unreasonable to design techniques that excel across all

properties simultaneously. A more practical approach could be to tailor or choose

techniques based on the application in which they are used. The need for a context-

specific approach is underscored by the findings of the study presented in Chapter 5,

which diverged from those of similar work on image classification (Alqaraawi et al.,

2020).
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6.4 Limitations
The studies presented in Chapters 3, 4 and 5 confirm that not only is designing for

human-AI interaction challenging, but so is the design of user studies to investigate

these interactions. In “interaction”, there are multiple dimensions to consider, in-

cluding user expectations, mental models, behaviours, and decision-making, as well

as the interpretability, influence, and perceived role of the ML model. The interplay

of these factors creates a vast space for research that requires an interdisciplinary

perspective to capture the nuanced dynamics between human cognition and AI.

There are many aspects of interaction that the thesis did not evaluate due to the

scope of the research. User trust stands out as a key factor in people’s interactions

with AI-infused systems and an aspect that the literature on human-AI interaction

has frequently focused on (Jacovi et al., 2021; Ueno et al., 2022; Hyesun, Prabu,

and Arun, 2023; Milana, Costanza, and Fischer, 2023). Defined by J. D. Lee and

See, 2004 as “an attitude that an agent will achieve an individual’s goal in a situa-

tion characterised by uncertainty and vulnerability”, trust in AI becomes crucial in

high-stakes scenarios such as healthcare, finance, and criminal justice. In a survey

on empirical methodologies used to evaluate trust in AI-assisted decision-making,

Vereschak, Bailly, and Caramiaux, 2021 specifically recommend using established

questionnaires that comprise all the key elements defining trust and designing stud-

ies to include interactions over a long period of time to measure how trust can be

developed, damaged or repaired.

Although the studies were not designed to address it directly, trust is an un-

derlying theme of this thesis, taking different forms in Chapters 3, 4 and 5. In

Chapter 3, the perception of the model as being objective and authoritative echoes

previous research on non-experts in ML to trust algorithmic outputs, even when

they lack transparency or interpretability (Q. Yang, Suh, et al., 2018). In contrast,

Chapter 4 illustrates how knowledge of the inner workings can mediate reliance

by enabling users to more critically assess model outputs and adjust their trust ac-

cordingly. The findings in Chapter 5 suggest that merely presenting explanations

does not guarantee transparency, as effective transparency should enable users to
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anticipate system behaviour. Consequently, trust in the model may not have been

meaningfully calibrated, as insufficiently informative explanations fail to improve

appropriate reliance on AI (Buçinca, Malaya, and Gajos, 2021).

The focus of the work presented was also necessarily narrowed down to a spe-

cific application area: text classification. However, AI is widely used in other do-

mains too, such as image recognition, recommendation systems, and generative

applications, each of which presenting their own unique challenges for human-AI

interaction. Chapter 5 is an example of how the same methodology applied in one

domain revealed different findings in another: saliency maps had a significant effect

in model outcome prediction in image classification but did not have the same effect

in text classification. This shows that the findings reported in this thesis are not auto-

matically generalisable to all applications of AI, and should instead be investigated

in other domains to confirm or challenge their applicability across contexts.

The difficulty in designing and running the studies reported was the reason

for various trade-offs and compromises that were made to balance ecological va-

lidity with practical feasibility. Participant recruitment posed a serious challenge in

conducting the study reported in Chapter 3. Eligibility requirements included: ex-

perience in QDA, lack of experience in AI/ML, having an appropriately long data

set pre-analysed using compatible QDA software, and a computer with an oper-

ating system version compatible with TACA. Additionally, some participants en-

countered various errors during the initial installation and setup phase of TACA.

These issues, which stemmed from initial configuration challenges, were difficult

to replicate and resolve without access to the participants’ data sets, which could

not be shared due to ethical restrictions. For this reason, the requirement for a pre-

analysed data set was eventually dropped and participants without a data set were

given a collection of newspaper restaurant reviews.

The decision to use restaurant reviews introduced limitations to the study that

partly motivated the autoethnography reported in Chapter 4. Namely, that the ma-

jority of the participants lacked deep familiarity with the data set, or at least the

same level of contextual understanding as those who used their own data. Addition-
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ally, the analysis of the restaurant reviews was not conducted out of genuine interest

by this group of participants, unlike the analysis of participants using their own data

set, which would likely have held more personal relevance and meaning. The lack

of intrinsic motivation may have influenced both the depth and engagement of the

participants’ analysis, while the unfamiliarity with the data may have influenced the

participants in the review of the outcome of the classifier.

Chapters 3, 4 and 5 all present studies based on the same XGBoost classifier.

Although Gradient Boosting models are effective and still used for many classifica-

tion and regression tasks, NLP has recently been revolutionised by the Transformer

architecture, which is far more commonly used today. The three studies conducted

were designed around classifications that were conflicting with the training data

(false positives and false negatives), since these could create situations where the

user would need to critically evaluate and interpret the output of the model. To ob-

tain a sufficient number of false positive and false negative classifications, it would

have been necessary to either artificially limit the performance of the model or sig-

nificantly increase the size of the data sets. The first option would have arguably

compromised ecological validity, while the second would have reduced practical

feasibility. Nonetheless, using a Transformer would have revealed findings that

would have been perhaps more applicable to real-world modern applications. For

example, the study reported in Chapter 5 evaluated strictly model-agnostic inter-

pretability techniques since Gradient Boosting models are gradually being replaced

by Transformers in many applications, but the use of Transformers would have al-

lowed for the evaluation of model-specific techniques, such as Integrated Gradients

(Sanyal and Ren, 2021). This would have yielded results that are more useful for

current applications of ML in text.

6.5 Future Work
The thesis revealed several potential avenues for future work, some of which build

on the findings reported, while others could address the limitations discussed.

Chapter 3 reported the perception of the ML model as an external and objective
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source of advice of non-expert users, who considered misclassifications as sugges-

tions and rarely questioned the performance of the model. One could argue that this

perception was due to the ambiguity of the data more so than a bias towards AI. Al-

though the participants in the interview specifically used terms like “objective” and

almost always blamed themselves when encountering unexpected outputs, future

work could explore this in more depth. For example, a between-subject user study

could be designed where one group of participants is told that the coding sugges-

tions are generated by AI, while another is told that these belong to a human coder.

An analysis of the responses in a post-study interview would then confirm or reject

this finding.

Chapter 4 reported on personal experiences regarding the use of TACA as an

IML tool to assist in the coding phase of thematic analysis. One aspect that emerged

is the potential benefit of using interpretability techniques not just for passive in-

spection of model behaviour, but also to drive model feedback within the IML cy-

cle. Recent work has confirmed that interpretability techniques can significantly

enhance the user’s ability to correct the model by providing explanations that high-

light misclassifications and areas of improvement (Teso et al., 2023). Implementing

explanations in TACA could reveal complementary results by evaluating how model

transparency affects non-expert perceptions of the model, and whether these are still

effective in driving model behaviour when the ground truth is ambiguous.

Chapter 5 concluded that the interpretability techniques LIME and SHAP do

not have any substantial effects on model outcome prediction. This was partly ex-

plained by the fact that the samples shown with the heat maps as example classifi-

cations contained different features than the ones present in the task samples (see

Appendix C.7). Future work could confirm this through a think-aloud protocol us-

ing the same experimental design. During the user study reported, this approach

was attempted in pilot studies involving two participants at a time so that they could

discuss salient feature in order to come to the same decision on model outcome. The

study design was eventually discarded due to technical and recruitment challenges.

However, re-introducing a think-aloud protocol could reveal the decision-making
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process of users exposed to interpretability techniques and thus provide an explana-

tion for the lack of effects.

There is also a clear opportunity to repeat the three studies with a Transformer

model. Taking advantage of the system contribution in TACA, it could be possi-

ble to simply replace the XGBoost model with a BERT model (Koroteev, 2021)

fine-tuned for text classification. Similarly, BERT could be used to generate the

classifications for the study evaluating interpretability techniques. Instead of us-

ing pre-generated GloVe word embeddings, the BERT model would dynamically

generate contextual embeddings, meaning that, when sampling example sentences

based on vector distance from the task sentences, it is more likely that the example

sentences are closer in meaning to the task sample. This would evaluate in more

depth whether the features of example sentences in local explanations are indeed

representative enough to support a meaningful understanding of model behaviour,

potentially confirming or refuting the implication that current examples lack suffi-

cient representativeness.

The three studies reported in this thesis were designed by deliberately intro-

ducing ambiguous data. Future work could explore different application areas of

ML where this is also true, such as legal and judicial analysis or human behaviour

predictions. This would be particularly useful considering that the eligibility re-

quirement of experience in QDA meant that most of the participants recruited for

the study reported in Chapter 3 had a background in HCI or psychology (see Ta-

ble 3.1). Drawing from a different participant pool is important because it would

provide insights into how individuals with different background and varying exper-

tise interpret the data and the output of the model. For example, the participants in

the user study easily understood the terms of the Confusion Tables (true positive,

false negative, etc.), but this could be due to their familiarity scientific terminology

and experience in data analysis. Different backgrounds could reveal alternative per-

spectives and provide a more comprehensive understanding of user needs in diverse

application areas.

Finally, future work could also frame evaluations of IML systems and inter-
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pretability techniques within user trust. The literature on human-AI trust has two

main areas of interest: defining what trust is and what factors affect it (Vereschak,

Alizadeh, et al., 2024). Additional user evaluations on TACA would thus fall in the

second camp by specifically evaluating the main factors of trust in AI identified by

Glikson and Woolley, 2020: tangibility, transparency, performance, task character-

istics, anthropomorphism, and socially-oriented behaviours. Studies could employ

the practical guidelines for the methodology of studying trust in decision-making

AI applications identified by Vereschak, Bailly, and Caramiaux, 2021. Moreover,

when measuring trust in AI, it can be beneficial for future work to design user stud-

ies that incorporate elements of risk, as this aligns with the definition of trust by

J. D. Lee and See, 2004 concerning “a situation characterised by uncertainty and

vulnerability”, and simulates real-world decision-making contexts where trust is

most relevant (Milana, Costanza, and Fischer, 2023).

6.6 Conclusion
This thesis reports on a series of studies aimed at evaluating the interaction with

ML text classifiers and interpretability techniques. Building on previous work, the

thesis reiterates the importance of studying human-AI interaction as ML continues

to be implemented in a growing number of application areas with systems that do

not require technical knowledge from the users.

In addition to a system contribution in a fully-functional IML application to

assist in thematic analysis, this thesis combines quantitative, qualitative, and self-

study methods, contributing to both methodological and empirical insights by re-

vealing the following key findings:

• In the absence of a well-defined ground truth, participants who were non-

expert in ML were subject to perceiving ML outputs as objective, often at-

tributing poor performance to themselves rather than questioning the model.

• ML can play an important role in supporting analytical processes, although

users should be aware that models reinforce existing patterns in the training

data and do not generate radical new knowledge.



6.6. Conclusion 162

• The most commonly used local interpretability techniques, LIME and SHAP,

had no impact on participants’ ability to predict model outcomes in text clas-

sification tasks.

• Different interpretability techniques shifted the participants’ focus onto dif-

ferent features, but these features rarely aligned with the actual behaviour of

the model.

These findings were possible due to the use of training data sets with an am-

biguous ground truth, reflecting real-world complexities where labels are often sub-

ject to interpretation. Unlike ML classification tasks typically used in research that

use clearly defined labels, this approach provided a more realistic assessment of

user behaviour, capturing how subjectivity affects the perception of ML. Hopefully,

this work will inspire future researchers to explore similar scenarios in human-AI

interaction and draw attention to the unique perspective of HCI research on AI.
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If you would like to be contacted in the future by UCL researchers about participating in follow up studies to this 
project, or in future studies of a similar nature, please tick the appropriate box below. 

 Yes, I would be happy to be contacted in this way 
If yes, please include your email address here: _____________________________________ 

 

 No, I would not like to be contacted  
 
_________________________ ________________ ___________________ 
Name of participant Date Signature 
 
_________________________ ________________ ___________________ 
Researcher Date Signature 
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Thematic Analysis Coding Assistant Tool 

The tool trains a machine learning classifier on user-coded sentences in a transcript to code 

additional sentences you might have missed during thematic analysis. Initially, the model might not 

be very accurate, but you can keep refining data by re-labelling sentences and re-training the 

classifier to attempt to improve accuracy. However, please note that the focus of the study is your 

experience with the reclassification process and your interactions with the model, rather than the 

accuracy of the classifier.  

Setup 

Step 1: Organise your files  

If you used Microsoft Word to code your transcript, codes should appear in comments, and the 

same delimiter should be used to separate multiple codes in the same comment, e.g. “; ”. 

If you used NVivo to code your transcript: 

1. Inside NVivo, select all the codes at the lowest level -> right click -> Export…  

(to quickly select all the codes: Ctrl/⌘ + A -> Ctrl/⌘ + click to deselect higher level codes) 

 

 

 
2. On Windows, after you click on “Export…”, select “Reference View”, the “Name” checkbox, 

and “Folder and Hierarchical Name” from the dropdown list. 

3. Export all the codes in a separate folder. The folder should only contain .docx files, one for 

each code.  
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If you used MAXQDA to code your transcript: 

1. Inside MAXQDA, select the transcripts from the Document System pane: 

 

 
 

2. Select the codes from the Code System pane: 
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3. Open the Retreived Segments pane and click on the W button to export all segments in a 

.docx file. 

 

If you used Dedoose to code your transcript: 

1. Inside Dedoose, click Export Data in the Project pane: 

 

2. Click Export Excerpts in the popup: 
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3. Select Text (txt) under Export Type and click Export to export the excerpts in a .txt file (leave 

all the checkboxes untouched): 

 

Step 2: Run the tool 

Please note that the tool is at an early stage so you might encounter some bugs. If this happens, 
please send us the error report shown in the error popup, making sure the text does not contain any 
sensitive data, such as extracts from your transcript.  
 
To install the tool, 

 
on Windows: 

1. Extract TACA.zip in a desired location 

2. Navigate inside the TACA directory and run TACA.exe 

3. Allow the executable to run: 

     

on MacOS: 

1. Open TACA.dmg 

2. Drag the .app into the Applications directory 

3. Navigate to Applications and run TACA.app 

4. Allow the application to run 
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Please be patient while the tool loads for the first time. This can take several minutes, and the 

window might appear blank. When the tool has finished loading, you should see the initial page 

where you can import your files. In order: 

1. Import your transcript .docx file 

2. Select whether the transcript was coded using Word, NVivo, MAXQDA or Dedoose 

3. If you selected Word, insert the delimiter you used to separate multiple codes in the same 

comment 

4. If you selected NVivo, import the folder containing the codes .docx files 

5. If you selected MAXQDA, import the Coded Segments .docx file 

6. If you selected Dedoose, import the Excerpts .txt file 

7. Edit the codes.csv file automatically generated so that each column header is the name of a 

theme, and the respective codes appear below, e.g.:  

 

8. Enter meaningless words or terms to be ignored by the machine learning model. These 

should be separated by a semicolon, e.g. “Interviewer 1;Participant 1”. You can skip this 

step. 
9. Press “Done” to train the model 

10. Wait until the model is done training (this can take a while depending on the length of your 

transcript) 
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Using the tool 

For a video tutorial of the tool, please click here. 

Text 

 

The Text tab contains the entire transcript. Sentences you coded manually are highlighted in grey, 

while those coded by the model appear in blue. Theme names appear in line with the respective 

sentences and are also shown in a tooltip on mouseover. The tool works with themes instead of 

codes to simplify the implementation of the learning algorithm.  

Codes 

 

The codes tab contains the table of codes you have imported. Each theme and code show a counter 

indicating the number of sentences (this counter can be 0 if no sentences were found with that 

code). You can click a code to reveal the sentences you manually coded in a tooltip.  
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Keywords Tables 

 

The Keywords tabs contain three tables:  

1. “Predict Keywords” containing only sentences coded by the model 

2. “Train Keywords” containing only sentences you manually coded 

3. “All Keywords” containing both types of sentences 

Here, the most frequent words are shown under each theme, along with a counter indicating the 

number of sentences that contain them. You can click on a word to reveal these sentences in a 

tooltip. Sentences coded by the model have a blue background, while those manually coded have a 

grey background.  

You can re-label sentences to different themes either by dragging and dropping single sentences 

from the tooltip to a different column/bin, or dragging and dropping keywords from one column to 

another, or to the bin. Moving sentences to the bin removes the theme from those sentences. 

Moving a keyword is equal to moving the entire list of sentences that contain it. You might see 

several meaningless keywords that you might have forgotten to include in the keywords filter. Please 

ignore these and focus on the meaningful keywords/sentences you would like to re-label.  

After you are finished re-labelling sentences, click the “Re-classify” button to re-train the machine 

learning model. The tool will update all the tabs once it is finished loading. Significant changes in the 

Keywords tables after re-training will be shown with highlighted table cells.   
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Confusion Tables 

 

The Confusion Tables tabs contain a table version of confusion matrices for each theme. Confusion 

matrices are a way to evaluate the performance of the classifier. The model takes 20% of the 

sentences you manually coded ignoring the codes, and tries to guess them itself to see what it gets 

right. Confusion matrices are made of 4 quadrants, in this case columns: 

• True Positives: Sentences the model should have coded in this theme, and did 

• False Positives: Sentences the model should not have coded in this theme, but did 

• True Negatives: Sentences the model should not have coded in this theme, and did not 

• False Negatives: Sentences the model should have coded in this theme, but did not 

Words are sorted by frequency in each column, along with a counter. You can click on each word to 

reveal the sentences that contain it.  
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A.5 Semi-structured Interview Script

Background and Experience

• Could you please describe your academic background and your experience

with qualitative data analysis?

Coding Process

• How did the coding of the restaurant reviews go?

• Can you describe the transcript/project you used for this study?

• How long is the text?

• How long ago did you code your transcript?

• What software did you use to code your transcript/reviews?

• How long did it take in total?

• How many themes did you have?

Overall Experience

• How would you describe your overall experience using the tool?

Tool Functionality

• Describe what the tool does and how it works, like you would to a friend who

has never seen it before?

• How would you explain how the tool does this?

• How does the tool make coding easier/harder/no difference?

• What do you think is the role of the researcher compared to the role of the

model?

• Clear separation QDA/assistant?
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Accuracy of Suggestions

• From this tab, how accurate do you think the suggestions are compared to

your own coding?

• Example of a suggestion that makes sense?

• Why do you think the sentence was suggested?

• Example of a suggestion that does not make sense?

• Why do you think the sentence was suggested?

Text Tab

• What did you think of the way the keywords are visualised in a table format

and how they are sorted by frequency?

• Would you have sorted them differently?

• Have you ever seen your data like this?

• Have you opened the tooltip, and when do you think this would be most

useful?

• Compared predict with train/all?

• What is the value (if any) of these tables in informing qualitative data analy-

sis?

Reclassification Process

• Have you reclassified any keywords or sentences?

• Did dragging keywords make reclassifying easier or harder?

• Compared to single sentences?

• Give an example of when you used this feature (one or more examples)
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• How did you decide which keywords or sentences to move before retraining

the model?

• Average position of retrained keywords?

• Did you also reclassify trained samples, and if so, why?

• Example of when retraining the model gave results you expected/did not ex-

pect?

Model Inspection

• How did you evaluate the current state of the model at each reclassification

step?

• Where/how were you able to see which theme the model performed the best

in?

• Which tabs did you switch to after reclassifying, and why?

• Do you feel the model has improved over the reclassifications, and how much

at each step?

• What do you think the model has learned based on the data and your interac-

tions with it?

• What concepts emerged from the tables after each reclassification (in terms

of what the model learned)?

Confusion Tables

• Do you remember the description of this tab from the instructions document?

• Have you ever heard of these terms before?

• Were the terms clear?

• What did you think about this table?
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• Particular strategy around confusion tables (counters, false positive/negative

columns, etc.)?

• How do you feel about situations where the model disagreed with your coding

(false columns)?

• Tooltip?

• Which columns do you think are most useful for reflecting on your coding

and why?

• Which columns do you think are most useful for evaluating the performance

of the model and why?

• How would you use this table? (evaluate the model or for coding review?)

Features

• Most interesting or useful feature, (tool as part of research, writing a paper,

etc)

• Least interesting or useful feature, (tool as part of research, writing a paper,

etc)

• If you had to evaluate how well the model is performing, which tab would

you use and why?

• Do you think this tab is effective in the evaluation?

• Insights learned after using the tool besides sentences that you should have or

should not have coded? Is there anything more general that emerged? Maybe

a theme that you thought you could have added, changed, or removed?

Use Case

• Which data do you think is particularly suitable for TACA?

• Thoughts on using TACA with different stages/projects (top down approach

vs bottom up approach)?
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• Would you see using the tool iteratively or just once?

Challenges and Benefits

• What are the challenges/limitations of coding data with existing tools?

• Are there any features that [chosen QDA] could benefit from any features

from TACA?

• Which ones and why?

• Would TACA benefit from any features from [chosen QDA]?

• Which ones and why?

General Comments

• Do you have any other comments?
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B.1 Manual Qualitative Data Analysis Themes and

Codes
Table B.1: Themes (header) and codes identified in the manual thematic analysis performed

on the interview transcripts in the user study.

Design
Choices

Data Review Using
TACA/ML in
QDA

Perception of
the Model

User-Model
Tensions

Interacting with
the Model

Confusion
tables

Commonalities Automated
coding

Accuracy
interpretation

Ambiguity Change from one
theme to another

Confusion
tables
limitations

Correct Comparisons
with other tools

Accurate
suggestions

Class imbalance Drag and drop
interaction

Confusion
tables
terminology

Data exploration Easier Confusion
between
keywords as
pointers vs
semantics

Confusion tables
contradictions

Keywords as
handles

Confusion
tables tooltip

Explorative
approach

Efficiency of
using ML

Confusion tables
agreements

Data quantity Losing
information

Different
colors

Human fallibility Efficient Confusion tables
strategy

Different
performance on
different parts of
the data

Re-classification
improvement

Frequency Information
extraction

Experience in
qualitative
analysis

Data
convergence

Expectations Re-classification
limitations

Frequency
counters

Keywords
context

Faster External source Inaccuracy
interpretation

Re-classification
strategy

General
limitations

Keywords to
explore results

Human-tool
distinction

Higher level of
AI

Inaccurate
suggestions

Improvements Manual coding Iterative process How the tool
works

Justification of
model
inaccuracy

Keywords Manual coding
process

Limited value of
ML metrics

Improvement
interpretation

Own lack of
clarity

Keywords
tab

Own-coding
feedback

ML influence on
analysis

Interpretation Trust

Keywords
limitations

Perception of
things being
objectively
correct

Participant
background

Keywords vs
sentence
embeddings

Trust in the
model

Keywords
sorting

Reflexivity Purpose Lack of
experience in
ML

Trust in manual
coding

Keywords
tables

Research
question

Researcher vs
tool distinction

Mental model User own fault

Keywords
tooltip

Results
summarization

Team
collaboration

Missed sentences User-model
comparison

Limitations
of other tools

Semantic
relations

Theme
identification

Model evaluation

Meaningless
keywords

Semantics Theme
adjustments

Objective

Performance
limitations

Strategic
approach

Useful Perceived
limitations of the
model

Setup Subjectivity Use case
scenario

Personalized
model

Sources of
confusion

Supportive role User in control Re-classification
evaluation

Text tab Tedious Transparency
Understanding
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C.1 User Study Participant Information Sheet
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C.2 User Study Informed Consent Form
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C.3 User Study Instructions (Heat Maps)
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C.4 User Study Instructions (Summaries)
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C.5 LLM-Generated Summaries

C.5.1 Class: Opinions
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C.5.2 Class: Place
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C.5.3 Prompt Used

The following is a list of words ordered by their respective numerical weight in

descending order. Words with higher weights support the classification. Words

with lower weights are against the classification. The higher the weight, the more

the word supports the classification. These words are at the top of the list. The

lower the weight, the more the word is against the classification. These words

are at the bottom of the list. The closer the weight is to zero, the more the word

neither supports or is against the classification. These words are in the middle of

the list. From all the words, extract a common theme for the words that support the

classification, a common theme for the words that are against the classification, and

a common theme for the words that neither support or are against the classification.

Highlight any unique characteristics that stand out. Write about 250 words.
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C.6 Example User Study Page (LIME)
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C.7 Prediction Accuracy Across Different Interpretability Techniques

Table C.1: Comparison of prediction accuracy based on different interpretability techniques for all tasks.

Task Class Label Category No-Exp. LIME SHAP Summaries Chi-Square p-value
“I ordered it because it’s my job to do so and, as ever, so you
wouldn’t have to”

Opinions TP 0.59 0.38 0.53 0.50 3.25 (3,128) 0.36

“It turns out their style is to be extremely mean with the garlic
butter, which is the whole point of eating snails”

Opinions TP 0.72 0.72 0.81 0.72 1.10 (3, 128) 0.78

“The soup element is missing in action” Opinions TP 0.63 0.66 0.63 0.47 2.85 (3,128) 0.42
“Wine lists full of triple digits land first with the cocktail list,
when what you really want is the menu”

Opinions FN 0.41 0.59 0.34 0.47 4.41 (3, 128) 0.22

“The £12 salade niçoise is a pleasingly dense, chopped affair,
with a pretty arrangement of anchovies and tomatoes, topped
by half a boiled egg, its yolk at a perfect state of jamminess”

Opinions FN 0.25 0.22 0.19 0.09 2.87 (3, 128) 0.41

“Upstairs, past the spray-painted words ’liberté, égalité, fra-
ternité’, is a dining room seating another mighty 20.”

Opinions FP 0.31 0.31 0.19 0.19 2.67 (3, 128) 0.45

“It was a place where the tables were apparently so difficult
to nab even the waiting list had a waiting list.”

Opinions FP 0.66 0.66 0.59 0.50 2.18 (3, 128) 0.54

“Fancy Mayfair restaurants are full of older people wearing
young people’s shirts”

Place TP 0.53 0.78 0.72 0.78 6.44 (3, 128) 0.09

“drink something sweetly familiar from the short wine list
that hasn’t heard of anywhere outside France”

Place TP 0.75 0.75 0.81 0.63 3.04 (3, 128) 0.39

“But the people he was feeding at the Chiltern Firehouse were
only there to see and be obscene.”

Place TP 0.75 0.72 0.63 0.88 5.35 (3, 128) 0.15

“The £26 salade Niçoise is lovely in a quiet, understated way.” Place FN 0.53 0.69 0.69 0.72 3.05 (3, 128) 0.38
“The trout dish is £24.” Place FN 0.22 0.44 0.50 0.78 20.65 (3, 128) < 0.001
“they told me that seven people had been comped that
lunchtime and eight had not, mostly because they declined
the offer”

Place FP 0.28 0.28 0.34 0.13 4.37 (3, 128) 0.22

“Mendes is also the executive chef” Place FP 0.34 0.13 0.16 0.06 9.88 (3, 128) 0.02
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C.8 Pilot Studies Results

C.8.1 Pilot Study 1

C.8.1.1 Prediction Accuracy on Sampled Tasks

Table C.2: Comparison of prediction accuracy based on different interpretability techniques for all tasks in the first pilot study.

Task Class Label Classified No-Exp. LIME SHAP Summaries
“Ours comes crusted with cinnamon-boosted sugar with a
bowl of soft serve ice-cream, caramelised popcorn and a little
fruit.”

Food & Drinks Yes 1.00 1.00 1.00 1.00

“There’s a truly terrible dish of undercooked aubergine, with
a bland buttermilk dressing that tastes of very little.”

Food & Drinks Yes 0.88 0.94 0.94 1.00

“There are six of us at the table and nine dishes, so let’s find
out”

Food & Drinks No 0.81 0.75 0.81 0.94

“Finally, in April 2021, his restaurant reopened” Food & Drinks No 0.94 0.69 0.75 0.81
“Obviously, the pandemic intervened, during which Diagne
cooked in a local church for vulnerable people in his commu-
nity.”

People Yes 0.81 0.81 0.88 0.88

“Eventually he found sanctuary in a church an then got into a
hostel.”

People Yes 0.31 0.31 0.38 0.44

“What matters is that Coventry has this rough wood panel-
clad space offering a very good time to anyone up for the joys
of cooking their own lunch.”

People No 0.56 0.75 0.69 0.75

“It comes on a deep green herby emulsion, which in turn is
on apiuece of monogrammed paper.”

People No 1.00 0.94 0.88 0.81
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C.8.1.2 Distribution of Correct Answers by Condition

Figure C.1: Distributions of total correct predictions to all questions by condition in the
first pilot study.

C.8.1.3 ANOVA Results for Correct Predictions by Condition

Table C.3: ANOVA results for the effect of condition on the number of correct predictions
in the first pilot study. Note: Type III Sum of Squares.

Cases Sum of Squares df Mean Square F p
Condition 1.375 3 0.458 0.345 0.793
Residuals 79.625 60 1.327
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C.8.2 Pilot Study 2

C.8.2.1 Prediction Accuracy on Sampled Tasks

Table C.4: Comparison of prediction accuracy based on different interpretability techniques for all tasks in the second pilot study.

Task Class Label Category No-Exp. LIME SHAP Summaries
“The womb of a red-walled dining room feels like a happy
place, the rhythm of the chatter marked out by the clatter of
knife and fork on plate.”

Food & Drinks FP 0.56 0.56 0.50 0.25

“Now I’ve discovered I love it, which is a relief.” Food & Drinks FP 0.06 0.06 0.06 0.13
“Main courses justify their £20-plus price tags by both exe-
cution and volume”

Food & Drinks FN 0.56 0.31 0.25 0.63

“There’s a list of steaks to be cooked on the clanking Argen-
tine asador grill, on display behind the huge plateglass win-
dow at the back”

Food & Drinks FN 0.00 0.06 0.00 0.00

“But he’s clearly also extremely good at the laidback and en-
folding.”

People FP 0.44 0.38 0.50 0.63

“The skewered folds of beef served there had been dry and
flavourless, unless introduced to the pile of spices sitting far
to the side of a plate, like an overly exuberant party guest kept
away from everyone else for fear they’ll disgrace themselves.”

People FP 0.31 0.13 0.56 0.44

“It feeds and it cares.” People FN 0.19 0.44 0.38 0.13
“Ah, here’s our waiter who is charming and efficient, and
cursed with having to tell us, with great solemnity, that we are
about to be taken on ’A Mediterranean Culinary Odyssey”’

People FN 0.31 0.13 0.19 0.19
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C.8.2.2 Distribution of Correct Answers by Condition

Figure C.2: Distributions of total correct predictions to all questions by condition in the
second pilot study.

C.8.2.3 ANOVA Results for Correct Predictions by Condition

Table C.5: ANOVA results for the effect of condition on correct predictions in the second
pilot study. Note: Type III Sum of Squares.

Cases Sum of Squares df Mean Square F p
Condition 1.688 3 0.563 0.426 0.735
Residuals 79.250 60 1.321
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